Читаем Секреты числа пи [Почему неразрешима задача о квадратуре круга] (Мир математики. т.7.) полностью

Первая формула была открыта в 1982 году, а вторая была найдена Фредериком Карлом Штермером еще в 1896 году (опубликована в журнале Французского математического общества). Кто бы мог подумать, что эта формула будет использована для подобной задачи спустя столько лет! В математике никогда нельзя загадывать наперед: то, что сегодня кажется несущественным, завтра может стать основополагающим.

Возможно, помимо рекордных вычислений читателя заинтересуют не совсем традиционные вычислительные методы. Применение формулы

позволяет вычислить любой n-й знак π без необходимости рассчитывать все предыдущие. Увы, но результатом является только двоичное или шестнадцатеричное число. Формулы, подобные этой, создали Дэвид Бэйли, Питер Борвейн и Симон Плуфф. Они известны как формулы ВВР (по первым буквам фамилий их создателей). Считается, что эти формулы указывают на наступление новой эпохи в вычислениях.

Формула Фабриса Беллара (род. в 1972 году)

является производной от формул ВВР, и с ее помощью вычисления выполняются на 43 % быстрее.

При расчетах в двоичной системе находятся значения битов (0 или 1). Уже вычислен квадриллион знаков числа π. Используя эту формулу, мы можем определить, находится ли на определенной позиции 0 (возможны лишь два варианта: 0 или 1), не зная при этом предшествующих знаков. Совершенству нет предела, хотя реальная полезность подобной формулы представляется сомнительной.

В заключение упомянем, что уже найдены формулы, с помощью которых можно найти произвольный знак π в любой системе счисления.

ЦИФРА, ПОЛУЧЕННАЯ БЕЗ ФОРМУЛ

Колумнист журнала Scientific American Мартин Гарднер (1914–2010), известный писатель, полемист и математик, в 1966 году предсказал, что миллионным знаком π является 5. Это предположение основывалось на англоязычной версии Библии, в частности на 3-й книге, 14-й главе, стихе 16 (3-14-16), где используется магическое число 7 и седьмое слово содержит пять букв. Поэтому миллионный знак π после запятой (в те годы его значение еще не было вычислено) — должен быть равен 5. Никто не воспринимал это предположение всерьез, но в 1974 году были проведены необходимые расчеты, и, как и следовало ожидать, этот знак оказался равен 5. Мартин Гарднер не использовал ни одной формулы.

В стороне от формул

В завершение этой главы приведем еще несколько любопытных примеров. Например, формула

ii = e-π/2

объединяет комплексные и вещественные числа.

Следующее равенство связывает π с простыми числами:

где

ф(k) — количество целых чисел, меньших k и взаимно простых с ним.

Следующая формула касается квазицелых чисел. Эти числа очевидно являются иррациональными, но при расчетах на обычном калькуляторе выглядят как целые. Эти числа начинают отличаться от «реальных» целых чисел спустя множество знаков после запятой, и нужен очень точный калькулятор, чтобы увидеть этот десятичный знак после запятой, которому предшествует множество нулей. Выражение справа является квазицелым числом 427:

При расчетах на обычном калькуляторе значение этого выражения равно 427. Более точные расчеты показывают, что это число отличается от целого числа 427 только с 52-го знака после запятой. Именно с этого знака в десятичной записи этой дроби перестают фигурировать только нули. Выражение в скобках действительно заслуживает название квазицелого.

Нельзя отрицать, что π встречается во множестве областей. Например, рассмотрим гипотезу Кеплера об упаковке, чрезвычайно далекую от числа π. Какова максимальная плотность упаковки дисков на плоскости? Она равна

π/(2√3)

<p>Глава 5</p><p>Пи-мания</p>

Число π особенное. Мы уже говорили, что оно самое известное, самое изученное, самое знаменитое и самое упоминаемое. Энтузиазм, страсть и настоящую одержимость этим числом называют «пи-манией». Она одновременно академична и экстравагантна, интересна и занимательна. Читатель может удивиться, что мы уделяем столько внимания этому вопросу, слабо связанному с математикой. Такова реальность: π — это намного больше, чем просто число.

Вокруг числа π
Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное