Первая формула была открыта в 1982 году, а вторая была найдена Фредериком Карлом Штермером еще в 1896 году (опубликована в журнале Французского математического общества). Кто бы мог подумать, что эта формула будет использована для подобной задачи спустя столько лет! В математике никогда нельзя загадывать наперед: то, что сегодня кажется несущественным, завтра может стать основополагающим.
Возможно, помимо рекордных вычислений читателя заинтересуют не совсем традиционные вычислительные методы. Применение формулы
позволяет вычислить любой
Формула Фабриса Беллара (род. в 1972 году)
является производной от формул ВВР, и с ее помощью вычисления выполняются на 43 % быстрее.
При расчетах в двоичной системе находятся значения битов (0 или 1). Уже вычислен квадриллион знаков числа π. Используя эту формулу, мы можем определить, находится ли на определенной позиции 0 (возможны лишь два варианта: 0 или 1), не зная при этом предшествующих знаков. Совершенству нет предела, хотя реальная полезность подобной формулы представляется сомнительной.
В заключение упомянем, что уже найдены формулы, с помощью которых можно найти произвольный знак π в любой системе счисления.
ЦИФРА, ПОЛУЧЕННАЯ БЕЗ ФОРМУЛ
Колумнист журнала Scientific American Мартин Гарднер (1914–2010), известный писатель, полемист и математик, в 1966 году предсказал, что миллионным знаком π является 5. Это предположение основывалось на англоязычной версии Библии, в частности на 3-й книге, 14-й главе, стихе 16 (3-14-16), где используется магическое число 7 и седьмое слово содержит пять букв. Поэтому миллионный знак π после запятой (в те годы его значение еще не было вычислено) — должен быть равен 5. Никто не воспринимал это предположение всерьез, но в 1974 году были проведены необходимые расчеты, и, как и следовало ожидать, этот знак оказался равен 5. Мартин Гарднер не использовал ни одной формулы.
В завершение этой главы приведем еще несколько любопытных примеров. Например, формула
объединяет комплексные и вещественные числа.
Следующее равенство связывает π с простыми числами:
где
ф(
Следующая формула касается квазицелых чисел. Эти числа очевидно являются иррациональными, но при расчетах на обычном калькуляторе выглядят как целые. Эти числа начинают отличаться от «реальных» целых чисел спустя множество знаков после запятой, и нужен очень точный калькулятор, чтобы увидеть этот десятичный знак после запятой, которому предшествует множество нулей. Выражение справа является квазицелым числом 427:
При расчетах на обычном калькуляторе значение этого выражения равно 427. Более точные расчеты показывают, что это число отличается от целого числа 427 только с 52-го знака после запятой. Именно с этого знака в десятичной записи этой дроби перестают фигурировать только нули. Выражение в скобках действительно заслуживает название квазицелого.
Нельзя отрицать, что π встречается во множестве областей. Например, рассмотрим гипотезу Кеплера об упаковке, чрезвычайно далекую от числа π. Какова максимальная плотность упаковки дисков на плоскости? Она равна
π/(2√3)
Глава 5
Пи-мания
Число π особенное. Мы уже говорили, что оно самое известное, самое изученное, самое знаменитое и самое упоминаемое. Энтузиазм, страсть и настоящую одержимость этим числом называют «пи-манией». Она одновременно академична и экстравагантна, интересна и занимательна. Читатель может удивиться, что мы уделяем столько внимания этому вопросу, слабо связанному с математикой. Такова реальность: π — это намного больше, чем просто число.