Со временем нелепостей становилось все больше: в 1728 году некий Малтулон заявил, что разгадал тайну вечного движения и квадратуры круга одновременно. Кроме этого, он предложил вознаграждение тому, кто смог бы опровергнуть хотя бы один шаг доказательства, что свидетельствовало о недюжинной уверенности в себе. Итог оказался предсказуем: было показано, что его доказательство ошибочно, и Малтулону не оставалось другого выбора, кроме как выплатить обещанное. Неудивительно, что в 1753 году Французская академия наук постановила не рассматривать присылаемые решения задачи о квадратуре круга. Возможно, академиков испугало все большее число присылаемых решений и связанные с этим неизбежные издержки. Быть может, они решили таким способом избавиться от определенных личностей, подобных некоему Восенвиллю, который потребовал от Академии премию, полагавшуюся первому, кто решит эту задачу.
Даже после выхода доказательства Линдемана поток энтузиастов не иссякал, однако благодаря этому доказательству стала точно известна заведомая ошибочность всех подобных решений. Особо следует выделить тех, кто, подобно Сриниваса Рамануджану (1887–1920), знал, что задача не имеет решения, и находил приближенные построения с удивительной точностью. Так, с помощью одного из построений Рамануджана можно получить значение
Глава 3
Число
В основе теории вероятностей — только здравый смысл, сведенный до исчисления.
Пьер Симон маркиз де Лаплас
Может показаться, что теория вероятностей никак не связана с π. Тем не менее это далеко от истины. Скажем для начала, что 0,6079271018… = 6/π2 — это вероятность того, что два произвольно выбранных числа окажутся взаимно простыми. Это доказал Р. Шартр в 1904 году. Кроме этого, π2/6 = ζ (2), что устанавливает любопытную связь между π и загадочной функцией Римана ζ. Это также идет в копилку взаимосвязи между π и теорией вероятностей, хотя в теории вероятностей π — явный незваный гость. Наконец, это указывает на определенную корреляцию между π и простыми числами.
Огастес де Морган как-то объяснял страховому агенту математическую задачу о расчете вероятности того, что все члены определенной группы людей будут живы по прошествии некоторого времени. Из теории вероятностей следовало, что в итоговом значении будет фигурировать π. Страховой агент, убежденный, что де Морган ошибся, указал ему на это. Как может случиться, что число π применимо к продаже страховок? Откуда оно взялось? Тем не менее де Морган был прав: связь между ожидаемой продолжительностью жизни, страховыми полисами и числом π действительно существует, и называется она «нормальное распределение».
В этой главе мы покажем подобные таинственные соотношения. История начинается с вторжения благородного французского графа де Бюффона в мир математики. Бюффон решил изучить поведение иглы, которая падает на плоскость, не прокалывая ее, с математической точки зрения.
На листе бумаги нарисовано несколько параллельных прямых, расстояние между которыми одинаково. На лист произвольным образом бросают иголку. Когда игла пересечет одну из линий?
В простейшем случае длина иглы
Из элементарной геометрии очевидно, что если верно неравенство
то игла пересечет линию. Это будет отправной точкой наших расчетов. На следующем рисунке изображен график функции