Читаем Секреты числа пи [Почему неразрешима задача о квадратуре круга] (Мир математики. т.7.) полностью

Мы не будем приводить подробное доказательство этого утверждения, поскольку для этого потребуется использовать методы из теории Галуа, относящиеся к высшей математике. Вышесказанное можно представить в виде следующей диаграммы:

В царстве чисел все числа вплоть до алгебраических принадлежат к счетной бесконечности. Но мы уже знаем, что множество  не является счетным и намного больше этих множеств.  без алгебраических чисел, то есть «почти все» множество , также имеет трансфинитное, несчетное число элементов.

Математики называют неалгебраические числа (вспомним, что это все вещественные числа за исключением алгебраических, то есть множество  за вычетом ) трансцендентными числами, поскольку Эйлер писал, что эти числа «превосходят мощь алгебраических методов» (название «трансцендентные» происходит от латинского transcendere — «превосходить»). Следующее определение не содержит никаких философских подсмыслов, но является точным и однозначным: трансцендентным называется число, которое не может быть корнем многочлена с рациональными коэффициентами. Все трансцендентные числа являются иррациональными, множество трансцендентных чисел не является счетным. Его кардинальное число больше, чем .

Какое отношение все это имеет к числу π? π является не только иррациональным, но и трансцендентным, что доказал Линдеман в 1882 году. Так как π является трансцендентным, оно не является алгебраическим и его нельзя построить с помощью циркуля и линейки за конечное число действий. Таким образом, поиски классического решения задачи о квадратуре круга оказались завершены. Однако и в наши дни некоторые известные математики все еще получают «решения» задачи о квадратуре круга. Но тем, кто якобы решил нерешаемую задачу, уже готовы ответы.

Так, один известный математик передавал полученные решения задачи о квадратуре круга наиболее одаренным ученикам. Когда ошибка была найдена (иначе и быть не могло), автору возвращался заполненный формуляр: «Любезный друг! Благодарим за предоставленное решение задачи о квадратуре круга. Возвращаем ваше доказательство и указываем на первую обнаруженную нами ошибку. Она находится на странице… в строке… Искренне ваш, и проч.». Столь остроумным способом этот математик отвечал упрямцам, не желавшим признать очевидное.

Итак, число π принадлежит к трансцендентным числам, составляющим большую часть царства чисел. На первый взгляд, в нем нет ничего необычного — это всего лишь заурядное трансцендентное число. Оно столь обыденно и незначительно, что никто до сих пор не нашел среди его знаков никакой закономерности.

ТРАНСЦЕНДЕНТНЫЕ СВЯЗИ π

Число е является основанием натурального логарифма. Его значение равно 2,71828… После числа π это самая известная и наиболее часто встречающаяся математическая постоянная. Несомненно,

π + е = 5,859874482…,

но неизвестно, является ли это число трансцендентным. Удивительно, но известно, что одно из чисел π + е или πе является трансцендентным, но неизвестно, какое именно. Также неизвестно, является ли трансцендентным ππ.

Напротив, еx является трансцендентным, что было доказано благодаря теореме Александра Гельфонда (1906–1968) и Теодора Шнайдера (1911–1988). Однако это нельзя доказать для πe. В действительности неизвестно, является ли это число рациональным или иррациональным. Трансцендентными также являются еn√n (при n не равно 0), π + In 2 и π + In 2 + √ln3. Неизвестно, являются ли иррациональными π + е или π/е. J них известно, что если они являются алгебраическими, то многочлены, корнями которых они являются, имеют восьмую степень или выше и коэффициенты порядка 109. Этого недостаточно для строгого математического доказательства, но на бытовом уровне выглядит убедительно.

Квадратура круга
Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное