Читаем Секреты числа пи [Почему неразрешима задача о квадратуре круга] (Мир математики. т.7.) полностью

ПЬЕР СИМОН МАРКИЗ ДЕ ЛАПЛАС (1749–1827)

Французский астроном и математик, друг и протеже Наполеона, автор «Небесной механики» в пяти томах и других фундаментальных работ в области физики и универсальных знаний. Лаплас, который уже в юном возрасте продемонстрировал блестящие способности, с удивительной легкостью усваивал математический анализ и физику. Он внес вклад в развитие множества новых концепций в теории вероятностей (производящая функция последовательности, условная вероятность, задача Бюффона), в чистой математике (теория потенциала, преобразование Лапласа, гармонический анализ) и астрономии (форма Земли, образование Солнечной системы из туманности, теория возмущений). Его можно считать практически универсальным гением. Его научные достижения были столь удивительны для современников, что после смерти Лапласа его мозг извлекли для изучения, но ничего особенного в нем обнаружено не было. Наполеон сделал его министром, что не помешало Лапласу принять благородный титул после реставрации Бурбонов. Как гласит знаменитый исторический анекдот, Наполеон ознакомился с сочинением Лапласа об астрономии и удивился полному отсутствию слова «Бог» в его труде. «Это потому, что я в этой гипотезе не нуждался», — ответил ученый.

Нормальная кривая

Во многих задачах, связанных с теорией вероятностей и статистикой, например, в распределении роста, коэффициента интеллекта, инструментальных ошибок телескопа, интенсивности лазерного луча (и это лишь некоторые примеры), фигурирует так называемая кривая Гаусса, или нормальная кривая. Она соответствует распределению вероятностей с кривой плотности, в которой определяющую роль играет π.

Стандартное представление кривой можно получить, взяв среднее значение, равное нулю, и дисперсию δ2 = 1. В этом случае кривая будет иметь знакомую нам форму колокола, который слегка вытянут вдоль вертикальной оси.

Эта кривая описывается уравнением

Вероятность рассчитывается с помощью интеграла

Как можно убедиться, в этой формуле всегда присутствует π.

Закону нормального распределения подчиняется, например, распределение возраста смерти. Можно сказать, перефразируя Джона Донна, что всякий раз, когда кто-то умирает, по числу π звонит колокол — колокола Гаусса.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное