Немного позднее, в 1585 году, Адриан Антониш (ок. 1543–1620), отец Адриана Метиуса (15π–1635), рассчитал, что значение π лежит между 377/120 и 333/106. Его сын пробовал решить задачу о квадратуре круга; он вычислил нечто подобное среднему числителей и знаменателей и получил
Это очень точное значение, но его одного явно недостаточно для решения задачи.
Возможно, самая известная история, связанная с квадратурой круга, произошла со знаменитым философом и главой школы эмпиризма Томасом Гоббсом (1588–1679) и со знаменитым английским математиком Джоном Валлисом (1616–1703). Гоббс, вне сомнения, очень умный человек, но не получивший математическое образование, в 1655 году в труде «О теле» заявил, что решил задачу о квадратуре круга наряду с другими задачами, в частности о выпрямлении различных кривых. Понятно, что он ошибался, и Валлис в кратком труде Elenchus geometriae hobbianae описал различные ошибки и в язвительном тоне, но правдиво, отозвался о геометрических способностях Гоббса. Следует заметить, что Валлис исповедовал пресвитерианское учение, что было еще более ненавистно Гоббсу, который был противником всякой религии. Математическая подготовка Гоббса была недостаточной, ведь он познакомился с учением Евклида лишь в 40 лет, но, в конце концов, другие философы были столь же посредственными математиками, и в этом не было ничего особенного. Упомянем лишь один пример: уже в XIX веке Маркс утверждал, что диалектический материализм выводится логическими рассуждениями из уравнения второй степени. Гоббсу повредило то, что он не хотел признать своих ошибок, перевел спор на личности и возвращался к дискуссии снова и снова. В частности, его перу принадлежит книга «Замечания об абсурдной геометрии, деревенском языке, церковной политике в Шотландии и невежестве Джона Валлиса». Спор изобиловал придирками, к сожалению небеспочвенными. Так, Валлис обвинил Гоббса в плагиате работ его современников: «…Если в его изложении попадется нечто правдивое, то оно принадлежит не ему, а взято у кого-либо еще».
Знаменитый знак бесконечности
Валлис великолепно производил вычисления в уме. Возможно, причиной этому было то, что он страдал от бессонницы. Также он занимался грамматикой и, что еще более незаурядно, вложил немало сил в обучение глухонемых.
* * *
Бельгийскому иезуиту Грегуару де Сен-Венсану (1584–1667) мы обязаны, помимо прочего, созданием полярных координат, открытием новой системы, близкой к понятию интеграла, и точным расчетом площади под гиперболой. Он также утверждал, что решил задачу о квадратуре круга. Его современники восприняли это с изрядным скептицизмом, и в конце концов Гюйгенс нашел неизбежную ошибку в его рассуждениях. Он упомянут в этой книге за выдающиеся труды и в связи с тем, что ему принадлежит множество корректных и интересных математических доказательств.
Классический пример квадратуры круга представил производитель мыла Якоб Марцелис (1636 — ок. 1714), который утверждал, что
Огастес де Морган в своем сборнике математических ужасов A budget of paradoxes («Запас парадоксов») не слишком благосклонно заметил: «Как и следовало ожидать, в мыловарении он добился больших успехов, чем в вычислении знаков π».