Читаем Java: руководство для начинающих (ЛП) полностью

// продемонстрировать класс NumericFns class BoundsDemo { public static void main(String args[]) { // Применение класса Integer вполне допустимо, так как он // является подклассом, производным от класса Number. NumericFns iOb = new NumericFns(5) ; System.out.println("Reciprocal of iOb is " + iOb.reciprocal); System.out.println("Fractional component of iOb is " + iOb.fraction); System.out.println; // Применение класса Double также допустимо. NumericFns dOb = new NumericFns(5.25); System.out.println("Reciprocal of dOb is " + dOb.reciprocal); System.out.println("Fractional component of dOb is " + dOb.fraction); // Следующая строка кода не будет компилироваться, так как // класс String не является производным от класса Number. // NumericFns strOb = new NumericFns("Error"); }

} Ниже приведен результат выполнения данной программы.

Reciprocal of iOb is 0.2 Fractional component of iOb is 0.0

Reciprocal of dOb is 0.19047619047619047 Fractional component of dOb is 0.25 Как видите, для объявления класса NumericFns в данном примере служит следующая строка кода:

class NumericFns { Теперь тип т ограничен классом Number, а следовательно, компилятору Java известно, что для всех объектов типа т доступен метод doubleValue , а также другие методы, определенные в классе Number. И хотя это само по себе дает немалые преимущества, кроме того, предотвращает создание объектов класса NumericFns для нечисловых типов. Так, если попытаться удалить комментарии из строки кода в конце рассматриваемой здесь программы, а затем повторно скомпилировать ее, то будет получено сообщение об ошибке, поскольку класс String не является подклассом, производным от класса Number. Ограниченные типы оказываются особенно полезными в тех случаях, когда нужно обеспечить совместимость одного параметра типа с другим. Рассмотрим в качестве примера представленный ниже класс Pair. В нем хранятся два объекта, которые должны быть совместимы друг с другом.

// Тип V должен совпадать с типом Т или быть его подклассом. class Pair { Т first; V second; Pair(T a, V b) { first = a; second ='b; } // ...

} В классе Pair определяются два параметра типа т и V, причем V расширяет тип Т. Это означает, что тип V должен быть либо того же типа, что и т, либо его подклассом. Благодаря такому объявлению гарантируется, что два параметра типа, передаваемые конструктору класса Pair, будут совместимы друг с другом. Например, приведенные ниже строки кода составлены правильно.

// Эта строка кода верна, так как Т и V относятся типу Integer. Paircinteger, Integer> х = new Pair(l, 2);

//И эта строка кода верна, так как Integer является подклассом Number. Pair у = new Pair(10.4, 12); А следующий фрагмент кода содержит ошибку:

// Эта строка кода недопустима, так как String не является подклассом Number. Pair z = new Pair(10.4, "12"); В данном случае класс String не является производным от класса Number, что нарушает граничное условие, указанное в объявлении класса Pair. ## Использование метасимвольных аргументов Несмотря на всю полезность типовой безопасности в обобщениях, иногда она может помешать использованию идеально подходящих языковых конструкций. Допустим, требуется реализовать метод absEqual , возвращающий логическое значение true в том случае, если два объекта рассмотренного выше класса NumericFns содержат одинаковые абсолютные значения. Допустим также, что этот метод должен оперировать любыми типами числовых данных, которые могут храниться в сравниваемых объектах. Так, если один объект содержит значение 1,25 типа Double, а другой — значение -1,25 типа Float, метод absEqual должен возвращать логическое значение true. Один из способов реализации метода absEqual состоит в том, чтобы передавать этому методу параметр типа NumericFns, а затем сравнивать его абсолютное значение с абсолютным значением текущего объекта и возвращать логическое значение true, если эти значения совпадают. Например, вызов метода absEqual может выглядеть следующим образом:

NumericFns dOb = new NumericFns(1.25) ; NumericFns fOb = new NumericFns(-1.25) ;

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT