Читаем Числа: от арифметики до высшей математики полностью

Следовательно, единственное, что мы можем сделать, — это придумать такое число, Мы можем договориться, что символ # обозначает, что # × # равно отрицательному числу. Тогда #1 × #1 = -1. Это выражение справедливо по определению, а поскольку оно не противоречит ни одному из математических постулатов, то нет никаких оснований, чтобы его не использовать.

Разумеется, такое число является нереальным, воображаемым. Мы легко можем себе представить, что такое +$1 и -$1. +$1 — это доход в $1, а -$1 — это расход в $1. Но как представить себе #1$? Математики, которые первыми стали работать с этими новыми числами, назвали их мнимыми. В отличие от мнимых чисел обычные отрицательные и положительные числа, как рациональные, так и иррациональные, называются действительными.

Математики не стали изобретать для этих чисел нового знака, наподобие знака + или -, хотя мне кажется, это было бы целесообразно. Вместо этого они обозначили √-1 буквенным символом «i». Другими словами, i × i = -1, или √-1 = i. Кроме того, -i × -i также равняется i2, то есть -1. Мы также должны записать √-1 = -i.

И последнее, -i × i = -i2 = -(-1) = 1.

Теперь мы легко можем извлечь квадратный корень из любого отрицательного числа.

Величина √-4 равна √4 × √—1, или ±2 × i, что можно просто записать как ±2i.

Точно так же величина √-64 равна √64 × √-1, или ±8 × i, что можно просто записать как ±8i, а величина √-15 равна √15 × √-1, или ±3,8729832 × i, что можно просто записать как ±3,8729832i.

Числа и координаты по компасу

Однако теперь у нас есть отличный повод для возмущения. Что бы там ни говорили, как бы ни уславливались, совершенно непонятно, что такое эти мнимые числа, как можно их себе представить.

На самом деле такое число должно обозначать то, что мы ему приписали, то, о чем мы условились заранее. Не надо забывать, что числа — это изобретение человека и их цель — облегчить познание Вселенной, а со своими созданиями человек вправе поступать так, как считает нужным.

Вспомним, что у древних греков не было отрицательных чисел. Для них -1 была не менее таинственна и непонятна, чем для нас √—1, когда мы приступили к изучению мнимых чисел. Обратившись к отрицательным числам, мы использовали числовую ось, на которой вверх от нулевой отметки располагались положительные числа, а вниз — отрицательные (см. главу 2).

Такая схема сработала в прошлый раз, попробуем использовать ее и сейчас. Проведем через нулевую отметку еще одну линию, перпендикулярную первой числовой оси. Справа отложим через равные интервалы + li, +2i, +3i, +4i, +5i, +6i, …, а слева -li, —2i, -3i, —4i, —5i, -5i… Мы получили две числовые оси:

Числовые оси для действительных и мнимых чисел

Например, вместо знаков «+» и «-» мы можем использовать буквенные обозначения сторон света, как на компасе. Условимся, что положительные действительные числа — это N-числа, отрицательные действительные числа — это S-числа, положительные мнимые числа — это W-числа, а отрицательные мнимые числа — это Е-числа.

В нашей схеме совсем не нужно использовать странный термин «мнимое число», поскольку у нас все стороны света — реальны. Но у этого термина глубокие исторические корни, и теперь, пожалуй, поздновато менять название.

Теперь, используя «числа по компасу», мы можем создать свою собственную самодостаточную систему расчетов (создание такой эффективной системы — это цель многих математиков). Таблица умножения в нашей системе будет иметь такой вид:

Умножаем на N вращением в направлении 0ºУмножаем на Е вращением на 90° по часовой стрелке

И хотя наша таблица имеет довольно странный вид, у нее есть простое геометрическое толкование, которое представлено ниже на рисунках.

Я совсем не утверждаю, что только наша система справедлива, могут существовать и другие системы, в такой же мере справедливые и наглядные. Просто предложенная система удобна и используется.

Новые точки по компасу

Раз уж мы заговорили о севере, юге, западе и востоке, то следует вспомнить и о таких направлениях, как северо-запад, юго- восток и так далее. Поскольку результат умножения действительных чисел на мнимые никогда не будет ложиться ни на одну из осей (север—юг или восток—запад). А как обстоят дела со сложением, например, чему равна сумма 1 + i? Ученые-математики не удосужились предложить специальный символ для этого выражения, поэтому его оставляют в виде 1 + i, но в нашей системе координат его можно представить наглядно.Теперь, используя «числа по компасу», мы можем создать свою собственную самодостаточную систему расчетов (создание такой эффективной системы — это цель многих математиков). Таблица умножения в нашей системе будет иметь такой вид:

Умножение на S вращает ось на 180°E × S = WS × S = NW × S = EN × S = SУмножение на W вращает ось на 270°E × W = NS × W = EW × W = SN × W = W

N = положительное действительное число, например +1.

Е = положительное мнимое число, например +i.

S = отрицательное действительное число, например —1.

W = отрицательное мнимое число, например —i.

Перейти на страницу:

Все книги серии Популярная наука

Удивительная Солнечная система
Удивительная Солнечная система

Солнечная система – наш галактический дом. Она останется им до тех пор, пока человечество не выйдет к звездам. Но знаем ли мы свой дом? Его размеры, адрес, происхождение, перспективы на будущее и «где что лежит»?Похоже, что мы знаем наш дом недостаточно. Иначе не будоражили бы умы открытия, сделанные в последние годы, открытия подчас удивительные и притом намекающие на то, какую прорву новых знаний мы должны обрести в дальнейшем. Уже в наше время каждая новая книга о Солнечной системе устаревает спустя считаные годы. Очень уж много информации приносят телескопы и межпланетные аппараты. Сплошь и рядом астрономические исследования и даже эксперименты кардинально меняют старые представления о том закоулке Галактики, где мы имеем удовольствие жить.Цель этой книги – дать читателю современное представление о Солнечной системе как части Галактики.

Александр Николаевич Громов

Научная литература / Прочая научная литература / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное