Читаем Числа: от арифметики до высшей математики полностью

Третья ось состоит из гипермнимых чисел, которые обозначаются буквой j. На гипермнимой оси также имеется положительная и отрицательная области, где, соответственно, расположены положительные (+1j, +2j, +3j, +4j, +5j, +6j и т. д.) и отрицательные (-1j, -2j, -3j, - 4j, -5j, -6j и т. д.).

Теперь числа располагаются в пространстве, на точках пересечения плоскостей север—юг, запад—восток и «внутрь» и «наружу». При пересечении этих плоскостей образуются кубы, принцип тот же, что и при образовании квадратов на нашем «шахматном шаблоне». Каждая точка такого пространства имеет собственные координаты, которые являются гиперкомплексным числом.

Нам легко представить себе три оси в пространстве, поскольку это привычные три измерения: длина, ширина и высота. Однако математики оперируют с большим количеством измерений. Иногда они работают даже в таких системах, где точное количество осей не определено. Тогда говорят об «n-мерном пространстве», где n — это любое число.

<p>Глава 10</p><p>БЕСКОНЕЧНОСТЬ</p>

Каждый, кто начинает думать о числах, неизбежно приходит к выводу, что существует огромное количество чисел, и совершенно непонятно, как можно его выразить. На помощь приходит поэзия. Мы можем сказать, что чисел так же много, как песчинок в пустыне, как капель воды в океане или как мерцающих звезд на небе. Но для математика такие сравнения бесполезны. С точки зрения математика, мы можем к любому числу прибавить единицу и получить следующее число, затем к полученному числу прибавить единицу и так далее. Поскольку в математике нет никаких ограничений для операций сложения, можно сложить любые два числа, и, следовательно, этот процесс бесконечен. Таким образом, мы можем взять сколь угодно большое число, прибавить

к нему единицу и получить еще большее. Мы можем представить себе число, протяженность которого равна расстоянию до дальней звезды, но и к нему можно прибавить единицу и получить еще большее число.

Последовательность целых чисел, записанных в порядке 1, 2, 3…, представляет собой бесконечность, то есть нечто, не имеющее конца. То есть, когда мы пишем 1, 2, 3…, это означает «1, 2, 3 и далее бесконечно».

Точно таким же образом мы можем записать ряд целых отрицательных чисел: -1, -2, -3…, что будет означать «-1, -2, -3 и далее бесконечно» или ряд положительных или отрицательных мнимых чисел: +1i, +2i, +3i… или -1i, -2i, -3i…

А теперь давайте запишем другой ряд чисел, ряд четных чисел: 2, 4, 6, 8 и так далее. Сколько существует четных чисел?

С точки зрения обычного здравого смысла можно было бы сказать, что четных чисел вдвое меньше, чем всех целых чисел, вместе взятых, поскольку целые числа делятся на четные и нечетные. Скажем, из первых десяти чисел пять — четные, а пять — нечетные.

Но это не так. Ведь количество целых чисел бесконечно, и мы не можем говорить о «половине бесконечности».

Рассмотрим ряд четных чисел с другой точки зрения. Какое бы сколь угодно большое число мы ни выберем, к нему всегда можно прибавить 2 и получить число еще большее. Даже если мы представим себе гигантское четное число, цифры которого протянулись до самой дальней звезды, мы и к нему сможем прибавить 2 и получить еще большее число.

То же самое можно сказать о ряде нечетных чисел 1, 3, 5, 7… и о ряде чисел, кратных 5, то есть 5, 10, 15, 20, 25…, и о ряде чисел, кратных миллиону, то есть 1 000 000, 2 000 000, 3 000 000… Все эти ряды бесконечны, и, представляя себе такие ряды, вы составляете представление о понятии «бесконечность».

Счет без счета

Тем не менее мое объяснение может вас не удовлетворить. Ведь кажется настолько очевидным, что четных чисел должно быть вдвое меньше, чем целых чисел вообще, пусть даже их число будет бесконечно, а чисел, кратных миллиону, должно быть в миллион раз меньше, чем всех целых чисел.

Но далеко не всегда то, что кажется очевидным, соответствует истине. Казалось бы, очевидно, что, если человек стоит лицом к северу, его спина обращена к югу. Кто же станет возражать против этого? Но если он стоит на Южном полюсе, то это не соответствует истине. И его лицо, и его спина будут обращены на север.

Давайте все-таки разберемся с числами. Давайте выясним, какое соотношение существует между четными числами и всем количеством целых чисел. Как же это сделать, ведь целых чисел бесконечное количество? Тем не менее метод для такого подсчета существует.

Как мы обычно считаем объекты? Мы приписываем каждому объекту определенное число из возрастающей последовательности целых чисел. Первый объект — объект номер один, второй — номер два и так далее. Если последний объект оказывается объектом номер десять, значит, у нас всего десять объектов.

А можно ли считать, не пользуясь числами? Это почти то же самое, что спросить: «А можно ли считать, не считая?» Как ни странно, это возможно.

Перейти на страницу:

Все книги серии Популярная наука

Удивительная Солнечная система
Удивительная Солнечная система

Солнечная система – наш галактический дом. Она останется им до тех пор, пока человечество не выйдет к звездам. Но знаем ли мы свой дом? Его размеры, адрес, происхождение, перспективы на будущее и «где что лежит»?Похоже, что мы знаем наш дом недостаточно. Иначе не будоражили бы умы открытия, сделанные в последние годы, открытия подчас удивительные и притом намекающие на то, какую прорву новых знаний мы должны обрести в дальнейшем. Уже в наше время каждая новая книга о Солнечной системе устаревает спустя считаные годы. Очень уж много информации приносят телескопы и межпланетные аппараты. Сплошь и рядом астрономические исследования и даже эксперименты кардинально меняют старые представления о том закоулке Галактики, где мы имеем удовольствие жить.Цель этой книги – дать читателю современное представление о Солнечной системе как части Галактики.

Александр Николаевич Громов

Научная литература / Прочая научная литература / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное