Читаем Числа: от арифметики до высшей математики полностью

грамм, если бы просто перемножили два обычных числа, как это делали в предыдущих разделах.

Не представляет трудности также возведение в степень экспоненциальных выражений и извлечение из них корня. Так, (9 × 104)2 равно 92 × (104)2, что равно 81 × (104)2, или 81 × 108, или 8,1 × 109. Точно так же можно извлечь корень из (9 × 104). Корень квадратный из (9 × 104) равно √9 × √104 или 3 × 102.

Полностью переходим на экспоненты

Есть еще неясные моменты при использовании экспоненциальной формы записи чисел. Если мы имеем дело с числами с большим количеством нулей, все достаточно просто. Но предположим, что надо перемножить 6837 и 1822. Если мы запишем эти числа в экспоненциальной форме, то получим: 6,837 × 103 и 1,822 × 103. Перемножить экспоненциальные части несложно, а вот что делать с числами 6,837 и 1,822? Мы столкнулись с той же задачей, как и при перемножении больших чисел, с той только разницей, что надо следить за положением десятичного знака. Другими словами, нам нужно представить число в такой форме, чтобы неэкспоненциальная часть была как можно короче или равнялась 1. Поскольку речь идет о десятеричной системе, нам понадобятся десятичные экспоненты, которые мы обсуждали в конце седьмой главы.

Теперь давайте подробнее рассмотрим экспоненты на основе 10. Начнем с 100 = 1 и 101 = 10. А чему равны экспоненты между 0 и 1? Например, 100,5 = 10½ = √10, что приблизительно равно 3,162278. Таким же способом (но с большими сложностями) можно получить значение 10 в степени от 0 до 1. Эти величины подсчитаны и собраны в специальных справочниках в виде таблиц. В нашей книжке приведена краткая таблица значений числа 10, возведенного в различные степени.

Поскольку в данном случае основанием всегда является число 10, то в таблицах обычно приводятся только показатели степени, то есть экспоненты. Отдельно записанная экспонента называется логарифмом, значение экспоненциального выражения в виде обычного числа называется антилогарифмом. Например, в выражении 102 = 100 справедливы следующие обозначения:

2 — логарифм 100,

а 100 — антилогарифм 2.

Таблица, приведенная ниже, в которой приведены антилогарифмы для ряда логарифмов, называется таблицей антилогарифмов.

Краткая таблица антилогарифмов

В таблице приведены приближенные значения антилогарифмов, да и невозможно привести точные значения, потому что они существуют только для таких чисел, как 100,0, 101,0 и так далее. Однако величину антилогарифма можно вычислить с такой точностью (то есть до такого десятичного знака), которая требуется в данном конкретном случае.

Если мы пойдем в обратном направлении, мы можем любое число от 1 до 10 представить как 10 в какой-то степени. Другими словами, для каждого числа при помощи соответствующих методик (которые мы не будем обсуждать в нашей книжке) можно вычислить эквивалентный логарифм.

Ниже приводится краткая таблица логарифмов для ряда обычных чисел. Подробные таблицы логарифмов, в которых можно найти логарифм для любого числа, содержатся в ряде справочников.

Таблицы логарифмов уже составлены, и никому больше не нужно заниматься самостоятельными подсчетами. Эта трудоемкая работа уже проделана. Единственное, что необходимо сделать теперь, — это найти нужное значение в таблице логарифмов. Возьмем наугад какое-нибудь число, например 3,2, и найдем по таблице, приведенной ниже, значение логарифма. Логарифм 3,2 равен 0,5051. Еще один пример из таблицы: логарифм 2,4 равен 0,3802. (Разумеется, это приближенные значения логарифмов.)

Малая таблица логарифмов

Теперь, когда у нас есть значения логарифмов, то есть экспонент, можно их использовать при операциях умножения и деления.

Мы знаем, что при умножении показатели степени суммируются, значит, чтобы перемножить 3,2 и 2,4, достаточно сложить их логарифмы, 0,5051 и 0,3802, сумма которых равна 0,8853. Это пока только экспонента, то есть число, которое мы ищем, — это 100.8853. Теперь надо опять обратиться к таблице антилогарифмов и найти антилогарифм 0,8853. Это 7,68. Таким образом, 3,2 × 2,4 = 7,68.

Если же мы хотим поделить 3,2 на 2,4, достаточно вычесть 0,3802 из 0,5051, что равно 0,1249. Антилогарифм этого числа равен 1,333, что и является ответом.

А теперь вернемся к примеру, с которого мы начали этот раздел: 6837 × 1822. Преобразуем эти числа в экспоненциальную форму и получим (6,837 × 103) × (1,822 × 103). Логарифм 103— это просто 3, так как логарифм числа — это степень, в которую надо возвести 10, чтобы получить данное число. А для того чтобы получить 103, очевидно, надо 10 возвести в третью степень. Точно так же логарифм 1012 равен 12, а логарифм 10-14 равен -14.

Логарифм числа 6,837 надо искать в таблице логарифмов более подробной, чем та, которая приведена в книжке. Он равен 0,83487. Тогда логарифм 6,837 × 103 равен 0,83487 + 3 (вспомните, при перемножении чисел мы суммируем их логарифмы), или 3,83487.

Точно так же по таблице находим логарифм 1,822, который равен 0,26055, таким образом, логарифм 1,822 × 103 равен 0,26055 + 3, или 3,26055.

Перейти на страницу:

Все книги серии Популярная наука

Удивительная Солнечная система
Удивительная Солнечная система

Солнечная система – наш галактический дом. Она останется им до тех пор, пока человечество не выйдет к звездам. Но знаем ли мы свой дом? Его размеры, адрес, происхождение, перспективы на будущее и «где что лежит»?Похоже, что мы знаем наш дом недостаточно. Иначе не будоражили бы умы открытия, сделанные в последние годы, открытия подчас удивительные и притом намекающие на то, какую прорву новых знаний мы должны обрести в дальнейшем. Уже в наше время каждая новая книга о Солнечной системе устаревает спустя считаные годы. Очень уж много информации приносят телескопы и межпланетные аппараты. Сплошь и рядом астрономические исследования и даже эксперименты кардинально меняют старые представления о том закоулке Галактики, где мы имеем удовольствие жить.Цель этой книги – дать читателю современное представление о Солнечной системе как части Галактики.

Александр Николаевич Громов

Научная литература / Прочая научная литература / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное