Читаем Числа: от арифметики до высшей математики полностью

Стрелками показано, как перемножаются составные части комплексных чисел. В соответствии со схемой:

3 × 6 = 18, 3 × i = 3i, 5i × 6 = 30i и 5i × i = 5i2 = -5, поскольку i2 равно -1.

Два из промежуточных результатов являются действительными числами, и их можно сложить, то есть 18 — 5 = 13. Другие две составляющие являются мнимыми числами, и их также можно сложить: 30i + 3i = 33i. Таким образом, результатом умножения является комплексное число 13 + 33i.

Другие арифметические операции также можно продемонстрировать при помощи аналогичной схемы. Таким образом, мы видим, что с комплексными числами можно работать по тем же правилам, что и с обычными числами, а значит, комплексные числа больше не являются для нас таинственными и непостижимыми.

Докапываемся до корней.Уходим дальше вглубь

Область комплексных чисел дает возможность рассмотреть некоторые сложные случаи при извлечении корней степени больше 2.

Мы с вами уже знаем, что √+1 равен +1 или -1, √-1 равен + i или -i.

А чему равен корень четвертой степени из +1 (4√+1)? Очевидно, что (+1) × (+1) × (+1) × ( + 1) = +1, то есть +1 — это один из корней четвертой степени из +1. Точно так же (-1) × (-1) × (-1) × (-1) = +1, то есть +1 — это также один из корней четвертой степени из +1. Но мы еще не перебрали все варианты. Как насчет выражения (+i) × (+i) × (+i) × (+i)? Результат перемножения (-i) × (-i) — это -1. Следовательно, (-i) × (-i) × (-i) × (-i) = (-1) × (-1) = +1. Это означает, что +i — это третий корень четвертой степени из +1. Точно так же мы можем показать, что —i — это четвертый корень четвертой степени из +1.

Следовательно, наша задача имеет следующий ответ: (4√1) = +1, -1, +i, -i. Точно так же мы можем показать, что (4√-1) равен +√+i, -√+i, +√-i, или -√-i, то есть эта задача имеет четыре равноценных решения.

А что же такое √+i? Ответ прост. (√+i) — это такое число, которое, будучи умножено на себя самое, дает i. Поэтому (+√+i) × (+√+i) = +i Следовательно, (+√+i) × (-√+i) × (+√-i) × (-√-i) = (+ i) × (+ i) = -1.

Следовательно, (+√+i) является одним из корней четвертой степени из (-1), другими корнями являются -√+i, +√-i и -√-i.

Точно таким же образом можно показать, что любое число имеет четыре корня четвертой степени.

Мы показали, что каждое число имеет два квадратных корня и четыре корня четвертой степени. Можно предположить также, что каждое число имеет три корня третьей степени, пять корней пятой степени, шесть корней шестой степени, сорок пять корней сорок пятой степени и так далее. Это утверждение абсолютно верно, но чтобы его доказать, потребуется сложный математический аппарат, которым мы не владеем, поэтому пока примем его на веру.

Правда, мы можем проверить это утверждение для корня третьей степени. Чему, например, равен корень кубический из 1, или (3√+1)? Во первых, (+1) × (+1) × (+1) = +1, то есть +1 является одним из кубических корней из 1.

А чему равны остальные два? Перейдем в область отрицательных чисел.

(-1) × (-1) × (-1) = ( + 1) × (-1) = -1

Таким образом, -1 не является корнем кубическим из 1. Более того, можно показать, что ни одно действительное число, а также ни одно мнимое (будь то -i или -И), возведенное в третью степень, не дает в результате + 1.

Значит, корень всего один, а других двух просто нет?

Эти два корня существуют, но в области комплексных чисел. Я просто приведу их значения, а вы сможете проверить, чему равны эти числа, возведенные в куб. Остальные два корня кубических из + 1 — это (-1/2 + 1/2√3i) и (-1/2 - 1/2√3i). Давайте проверим это утверждение.

Если (-1/2 + 1/2√3i) — один из кубических корней +1, то это значит, что (-1/2 + 1/2√3i)3 или (-1/2 + 1/2√3i) × (-1/2 + 1/2√3i) × (-1/2 + 1/2√3i) равно 1. Умножение можно произвести по той методике, которая описана выше.

Два промежуточных мнимых результата можно сложить, сумма чисел (-1/4√3i) и (-1/4√3i) равна (-1/2√3i). Что касается 3/4i2, то это действительное число, равное -3/4.Теперь сложим два действительных составляющих этого выражения: 3/4 - 1/4 = -1/2, таким образом, результат умножения -1/2 - 1/2√3i.

Этот результат нужно снова умножить на (-1/2 + 1/2√3i).

Две мнимые составляющие этого выражения (-1/4√3i) и (-1/4√3i) в сумме дают 0, так что ими можно пренебречь. Число 3/4i2 является действительным числом, так как i2 = -1, то есть 3/4i2 = -3/4. Добавим к 3/4оставшийся промежуточный результат 1/4 и получим 1. Итак, (-1/2 + 1/2√3i)3 равно 1.

Точно так же можно возвести в третью степень число (-1/2 - 1/2√3i).

(-1/2 - 1/2√3i) × (-1/2 - 1/2√3i) × (-1/2 - 1/2√3i) = 1.

Точно так же можно показать, что у числа -1 есть три корня третьей степени, два из которых комплексные, по три кубических корня и у чисел i и -i.

И не только i

На нашем «шахматном» шаблоне можно изобразить также третью линию, или ось, так, чтобы помимо направлений север, юг, запад и восток у нас появились направления «внутрь» и «наружу». Таким образом, наша «шахматная доска» из плоской фигуры превращается в объемную фигуру. Теперь точно так же, как в свое время мы получили сетку на плоскости, мы можем составить мозаику из кубиков.

Перейти на страницу:

Все книги серии Популярная наука

Удивительная Солнечная система
Удивительная Солнечная система

Солнечная система – наш галактический дом. Она останется им до тех пор, пока человечество не выйдет к звездам. Но знаем ли мы свой дом? Его размеры, адрес, происхождение, перспективы на будущее и «где что лежит»?Похоже, что мы знаем наш дом недостаточно. Иначе не будоражили бы умы открытия, сделанные в последние годы, открытия подчас удивительные и притом намекающие на то, какую прорву новых знаний мы должны обрести в дальнейшем. Уже в наше время каждая новая книга о Солнечной системе устаревает спустя считаные годы. Очень уж много информации приносят телескопы и межпланетные аппараты. Сплошь и рядом астрономические исследования и даже эксперименты кардинально меняют старые представления о том закоулке Галактики, где мы имеем удовольствие жить.Цель этой книги – дать читателю современное представление о Солнечной системе как части Галактики.

Александр Николаевич Громов

Научная литература / Прочая научная литература / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное