Читаем Числа: от арифметики до высшей математики полностью

Бесконечность действительных чисел обозначают С (от латинского «continuum»). С — это бесконечность более обширная, нежели счетная бесконечность, так как бесконечной последовательности целых чисел недостаточно, чтобы сосчитать бесконечную последовательность действительных чисел.

Можно проверить, являются ли другие виды бесконечных последовательностей счетными по отношению к бесконечной последовательности действительных чисел. Например, последовательность всех комплексных чисел (то есть все точки на плоскости, а не только точки на прямой) является счетной по отношению к последовательности всех действительных чисел. Точно так же и бесконечная последовательность гиперкомплексных чисел (то есть все точки в пространстве Вселенной, которую мы тоже считаем в данном случае бесконечной) является счетной по отношению к последовательности всех действительных чисел.

Бесконечные бесконечности

В 1896 году математик Джордж Кантор выдвинул теорию «трансфинитных чисел», согласно которой существует бесконечное количество бесконечностей разного рода. Эти бесконечности он обозначил буквой «алеф» древнееврейского алфавита. Каждую такую бесконечность обозначали при помощи правого нижнего индекса при букве «алеф»:

Первая бесконечность называется «алеф-ноль» и соответствует бесконечной последовательности целых чисел. Это означает, что бесконечность, с описания которой я начал эту главу, может быть самой малой из существующих бесконечностей. Другими словами, до сих пор не открыта такая бесконечная последовательность чего бы то ни было, которая не была бы счетной с последовательностью целых чисел по той причине, что остались бы лишние целые числа.

Считается, что следующая по порядку последовательность, «алеф-один» (1), представляет собой С, или бесконечность континуума, но это положение еще не было доказано. Никому не удалось обнаружить бесконечной последовательности чего бы то ни было в промежутке между «алеф-ноль» (0) и С, но никто также и не доказал, что существование такой бесконечности невозможно.

Бесконечность количества разнообразных кривых, которые можно нарисовать на плоскости, может быть бесконечностью «алеф-два» (2).

Что же касается следующих по порядку бесконечностей, то для них пока не было найдено соответствия.

Тем не менее уже существует концепция бесконечного разнообразия бесконечностей, которое начинается с обычной бесконечной последовательности целых чисел, наименьшей из возможных бесконечностей.

Таким образом, человек, на заре развития научившийся различать 1 и 2, путем проб и ошибок двигался к вершинам познания и в наши дни может бесстрашно оперировать такими понятиями, как многообразие бесконечностей.

В любой книге, посвященной достижениям человечества, не следует писать слово «конец», ибо конца не существует, а процесс познания бесконечен. Нужно ставить знак

Перейти на страницу:

Все книги серии Популярная наука

Удивительная Солнечная система
Удивительная Солнечная система

Солнечная система – наш галактический дом. Она останется им до тех пор, пока человечество не выйдет к звездам. Но знаем ли мы свой дом? Его размеры, адрес, происхождение, перспективы на будущее и «где что лежит»?Похоже, что мы знаем наш дом недостаточно. Иначе не будоражили бы умы открытия, сделанные в последние годы, открытия подчас удивительные и притом намекающие на то, какую прорву новых знаний мы должны обрести в дальнейшем. Уже в наше время каждая новая книга о Солнечной системе устаревает спустя считаные годы. Очень уж много информации приносят телескопы и межпланетные аппараты. Сплошь и рядом астрономические исследования и даже эксперименты кардинально меняют старые представления о том закоулке Галактики, где мы имеем удовольствие жить.Цель этой книги – дать читателю современное представление о Солнечной системе как части Галактики.

Александр Николаевич Громов

Научная литература / Прочая научная литература / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное