Вывод формулы Виета на современном языке выглядит следующим образом. Будем использовать треугольник, который применял еще Архимед. Обозначим основание треугольника за
Имеем
Используя элементарную тригонометрию (в развитие которой сам Виет внес заметный вклад), получим:
Следуя по пути Архимеда и используя многоугольник с удвоенным числом сторон, имеем
Тогда
Это ключевой момент рассуждений, поскольку далее с помощью простых алгебраических преобразований выводится следующее выражение:
Заметим, что при переходе к пределу при
После еще одного элементарного преобразования имеем
что сводится к исходной формуле. Как оценить начальное значение
и использовать тригонометрическую формулу половинного угла, согласно которой
cos (
получим, пусть и другим способом, искомое выражение:
Не будем забывать, что Виету нельзя было отказать в изобретательности. Отдельное место занимают две формулы, которые считаются королевами математической красоты. Они известны как формула Эйлера:
и формула Стирлинга:
ДЗЕТА-ФУНКЦИЯ РИМАНА
Эта легендарная функция, которую обозначают греческой буквой дзета (ζ), возможно, в будущем поможет нам узнать ранее немыслимое о простых числах и откроет их тайны. Благодаря исследованиям Эйлера эту функцию можно выразить в виде ряда, равно как и в виде бесконечного произведения:
Эта функция определяется на области, образованной комплексными числами, для которых вещественная часть больше 1. Она допускает аналитическое продолжение на всю комплексную плоскость без единицы, что показал Георг Фридрих Бернхард Риман (1826–1866). Гипотеза Римана гласит, что «нетривиальные нули» ζ имеют действительную часть, равную 1/2. Все это выглядит достаточно сложно (и является таковым на самом деле). Столь же непросто обнаружить связь между π и функцией ζ. Эту связь можно заметить, проанализировав значения ζ(s) и выявив, что к соответствует всем целым четным s. Илан Варди и Филипп Флажоле обнаружили следующий любопытный ряд:
Если говорить о цепных дробях, то с их помощью π выражается весьма непросто (первым с помощью бесконечной дроби значение π вычислил Ламберт):
Существуют и другие дроби, не столь известные, но намного более симметричные:
Последняя из формул — это формула лорда Броункера в несколько измененном виде. Цепные дроби отличаются одним положительным свойством: стоит нам остановиться в вычислениях на каком-либо этапе, полученная дробь будет наилучшим из возможных приближенных значений искомого числа. Если при вычислении π с помощью цепной дроби мы остановимся на определенном этапе и «раскрутим» этот клубок в обратную сторону, получим наилучшее из возможных приближенных рациональных значений. Так, если мы остановимся на дроби [3; 7, 15], то получим