Читаем Разработка ядра Linux полностью

#define __NR_fork 2

#define __NR_read 3

#define __NR_write 4

#define __NR_open 5

...

#define __NR_mq_unlink       278

#define __NR_mq_timedsend    279

#define __NR_mq_timedreceive 280

#define __NR_mq_notify       281

#define __NR_mq_getsetattr   282

В конец файла добавляется следующая строка.

#define __NR_foo 283

В конце концов необходимо реализовать сам системный вызов foo. Так как системный вызов должен быть вкомпилорован в образ ядра во всех конфигурациях, мы его поместим в файл kernel/sys.c. Код необходимо размещать в наиболее подходящем файле. Например, если функция относится к планированию выполнения процессов, то ее необходимо помещать в файл sched.c.

/*

* sys_foo - всеми любимый системный вызов.

*

* Возвращает размер стека ядра процесса

*/

asmlinkage long sys_foo(void) {

 return THREAD_SIZE;

}

Это все! Загрузите новое ядро. Теперь из пространства пользователя можно вызвать системную функцию foo.

<p>Доступ к системным вызовам из пространства пользователя</p>

В большинстве случаев системные вызовы поддерживаются библиотекой функций языка С. Пользовательские приложения могут получать прототипы функций из стандартных заголовочных файлов и компоновать программы с библиотекой С для использования вашего системного вызова (или библиотечной функции, которая вызывает ваш системный вызов). Однако если вы только что написали системный вызов, то маловероятно, что библиотека glibc уже его поддерживает!

К счастью, ОС Linux предоставляет набор макросов-оболочек для доступа к системным вызовам. Они позволяют установить содержимое регистров и выполнить машинную инструкцию int $0x80. Эти макросы имеют имя syscalln, где n — число от нуля до шести. Это число соответствует числу параметров, которые должны передаваться в системный вызов, так как макросу необходима информация о том, сколько ожидается параметров, и соответственно, нужно записать эти параметры в регистры процессора. Например, рассмотрим системный вызов open, который определен следующим образом.

long open(const char *filename, int flags, int mode)

Макрос для вызова этой системной функции будет выглядеть так.

#define NR_open 5

_syscall3(long, NR_open, const char*, filename, int, flags, int, mode);

После этого приложение может просто вызывать функцию open.

Каждый макрос принимает 2 + 2*n параметров. Первый параметр соответствует типу возвращаемого значения системного вызова. Второй параметр — имя системного вызова. После этого следуют тип и имя каждого параметра в том же порядке, что и у системного вызова. Постоянная NR_open, которая определена в файле , — это номер системного вызова. В функцию на языке программирования С такой вызов превращается с помощью вставок на языке ассемблера, которые выполняют рассмотренные в предыдущем разделе шаги. Значения аргументов помещаются в соответствующие регистры, и выполняется программное прерывание, которое перехватывается в режиме ядра. Вставка данного макроса в приложение — это все, что необходимо для выполнения системного вызова open.

Напишем макрос, который позволяет вызвать нашу замечательную системную функцию, и соответствующий код, который позволяет этот вызов протестировать.

#define __NR_foo 283

__syscall0(long, foo)

int main {

 long stack_size;

stack_size = foo;

 printf("Размер стека ядра равен %ld\n" , stack_size);

 return 0;

}

<p>Почему не нужно создавать системные вызовы</p>

Новый системный вызов легко реализовать, тем не менее это необходимо делать только тогда, когда ничего другого не остается. Часто, для того чтобы обеспечить новый системный вызов, существуют более подходящие варианты. Давайте рассмотрим некоторые "за" и "против" и возможные варианты.

Для создания нового интерфейса в виде системного вызова могут быть следующие "за".

• Системные вызовы просто реализовать и легко использовать.

• Производительность системных вызовов в операционной системе Linux очень высока.

Возможные "против".

• Необходимо получить номер системного вызова, который должен быть официально назначен в период работы над разрабатываемыми сериями ядер.

• После того как системный вызов включен в стабильную серию ядра, он становится "высеченным в камне". Интерфейс не должен меняться, чтобы не нарушить совместимости с прикладными пользовательскими программами.

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT