Читаем Разработка ядра Linux полностью

 /* Проверить, имеет пи право процесс использовать

    возможность CAP_SYS_NICE */

 if (!capable(CAP_SYS_NICE))

  return -EPERM;

 /* Возвратить нуль, чтобы обозначить успешное завершение */

 return 0;

}

Список всех "возможностей использования" и прав, которые за ними закреплены, содержится в файле .

<p>Контекст системного вызова</p>

Как уже обсуждалось в главе 3, "Управление процессами", при выполнении системного вызова ядро работает в контексте процесса. Указатель current указывает на текущее задание, которое и есть процессом, выполняющим системный вызов.

В контексте процесса ядро может переходит в приостановленное состояние (например, если системный вызов блокируется при вызове функции или явно вызывает функцию schedule), а также является полностью вытесняемым. Эти два момента важны. Возможность переходить в приостановленное состояние означает, что системный вызов может использовать большую часть функциональных возможностей ядра. Как будет видно из главы 6, "Прерывания и обработка прерываний", наличие возможности переходить в приостановленное состояние значительно упрощает программирование ядра[29]. Тот факт, что контекст процесса является вытесняемым, подразумевает, что, как и в пространстве пользователя, текущее задание может быть вытеснено другим заданием. Так как новое задание может выполнить тот же системный вызов, необходимо убедиться, что системные вызовы являются реентерабельными. Это очень похоже на требования, выдвигаемые для симметричной мультипроцессорной обработки. Способы защиты, которые обеспечивают реентерабельность, описаны в главе 8, "Введение в синхронизацию выполнения кода ядра", и в главе 9, "Средства синхронизации в ядре".

После завершение системного вызова управление передается обратно в функцию system_call, которая в конце концов производит переключение в пространство пользователя, и далее выполнение пользовательского процесса продолжается.

<p>Окончательные шаги регистрации системного вызова</p>

После того как системный вызов написан, процедура его регистрации в качестве официального системного вызова тривиальна и состоит в следующем.

• Добавляется запись в конец таблицы системных вызовов. Это необходимо сделать для всех аппаратных платформ, которые поддерживают этот системный вызов (для большинства системных вызовов — это все возможные платформы). Положение системного вызова в таблице — это номер системного вызова, начиная с нуля. Например, десятая запись таблицы соответствует системному вызову с номером девять.

• Для всех поддерживаемых аппаратных платформ номер системной функции должен быть определен в файле include/linux/unistd.h.

• Системный вызов должен быть вкомпилирован в образ ядра (в противоположность компиляции в качестве загружаемого модуля[30]). Это просто соответствует размещению кода в каком-нибудь важном файле каталога kernel/.

Давайте более детально рассмотрим эти шаги на примере функции системного вызова, foo. Вначале функция sys_fоо должна быть добавлена в таблицу системных вызовов. Для большинства аппаратных платформ таблица системных вызовов размещается в файле entry.S и выглядит примерно следующим образом.

ENTRY (sys_call_table)

 .long sys_restart_syscall / * 0 * /

 .long sys_exit

 .long sys_fork

 .long sys_read

 .long sys_write

 .long sys_open /* 5 */

...

 .long sys_timer_delete

 .long sys_clock_settime

 .long sys_clock_gettime /* 280 */

 .long sys_clock_getres

 .long sys_clock_nanosleep

Необходимо добавить новый системный вызов в конец этого списка:

.long sys_foo

Нашему системному вызову будет назначен следующий свободный номер, 283, хотя мы этого явно и не указывали. Для каждой аппаратной платформы, которую мы будем поддерживать, системный вызов должен быть добавлен в таблицу системных вызовов соответствующей аппаратной платформы (нет необходимости получать номер системного вызова для каждой платформы). Обычно необходимо сделать системный вызов доступным для всех аппаратных платформ. Следует обратить внимание на договоренность указывать комментарии с номером системного вызова через каждые пять записей, что позволяет быстро найти, какой номер какому системному вызову соответствует.

Далее необходимо добавить номер системного вызова в заголовочный файл include/asm/unistd.h, который сейчас выглядит примерно так.

/*

* This file contains the system call numbers.

*/

#define __NR_restart_syscall 0

#define __NR_exit 1

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT