Причина кроется в том, что у муравья Арга теперь три возможных варианта выбора (помимо возможности отправиться обратно той же дорогой, которой он пришел). Если он просто пойдет вперед, направляясь на запад вдоль вещественной оси, до тех пор пока не достигнет нуля при аргументе −2, он увидит, что значения функции становятся большими отрицательными числами типа минус одного триллиона, затем быстро доходят до отрицательных чисел умеренной величины (−1000, −100) и в конце концов достигают −1, затем −0,5, когда он наступит на точку нуль (поскольку
Если же из точки 1 он резко повернет направо и пойдет на север, пересекая верхнюю половину кривой овальной формы вблизи нулевой точки, то в окошке будут показаны значения функции, поднимающиеся вверх по отрицательной мнимой оси, от таких чисел, как −1000 000
Чтобы помочь вам справиться со всем этим непосильным грузом, а также чтобы найти прочную привязку к миру функций (которые мы ввели с помощью таблиц в главе 3), в таблице 13.4 проиллюстрирована только что описанная прогулка против часовой стрелки по верхушке овальной кривой. Аргументами в этой таблице выбраны числа со следующими фазами (в градусах, а не радианах): 0, 30, 60, 90, 120, 150 и 180. Все числа в таблице 13.4 округлены до четырех знаков после запятой.
1 | −∞ |
0,8505 + 0,4910 | −1,8273 |
0,4799 + 0,8312 | −0,7998 |
0,9935 | −0,4187 |
−0,5737 + 0,9937 | −0,2025 |
−1,3206 + 0,7625 | −0,0629 |
−2 | 0 |
Таблица 13.4. Муравей Арг проходит по верхушке овала на рисунке 13.6.
Если бы муравей повернул из точки 1 налево, то значения функции вернулись бы к нулю через положительную мнимую ось, проходя через числа 1,8273
Муравей Арг может начать свою прогулку из любого другого нуля дзета-функции. Все они показаны на рисунке 13.6 в виде маленьких кружочков. Чтобы нашему приятелю было проще разобраться, куда же он идет, там показаны значения, которые высвечиваются в окошке «значение функции» в тот момент, когда он уходит с рисунка вдоль любой из выбранных линий. (Для экономии места при записи этих значений m обозначает «миллион». Разумеется,
Наоборот, все линии, уходящие с рисунка по правому краю, отображаются в положительную вещественную ось. Как видно из рисунка, справа от критической полосы это довольно скучная функция. Вся обширная восточная область отображается в малюсенькую область вокруг точки 1. Здесь намного «меньше жизни», чем слева в западном регионе; но и этот западный регион не так интересен, как критическая полоса. Все интересное происходите дзета-функцией именно в критической полосе. (По поводу другой иллюстрации этой общей истины см. рассказ о гипотезе Линделёфа в приложении.)
Рисунок 13.6 фактически выражает суть данной книги. Он позволяет видеть дзета-функцию Римана настолько хорошо, насколько вообще
Некоторые — такие как эта — могут обеспечить вас занятием на всю жизнь. Лично я никоим образом не могу отнести себя к специалистам по дзета-функции. У меня нет исчерпывающего собрания литературы по дзета-функции, и при сборе материала для данной книги я опирался главным образом на университетские библиотеки и личные контакты. Но, даже не прилагая специальных усилий, я оказался обладателем собственных экземпляров книг «Теория дзета-функции Римана» Э.Ч. Титчмарша (412 страниц), «Введение в теорию дзета-функции Римана» С. Дж. Паттерсона (156 страниц) и незаменимой «Дзета-функции Римана» Хэролда Эдвардса (316 страниц, причем она у меня в трех экземплярах — это долгая история), а также толстенной папки с копиями статей из различных журналов и периодических изданий. Наверняка есть еще масса других увесистых книг, помогающих проникнуть в тайны этой функции, и, кроме того, тысячи статей. Это серьезная математика.