Читаем Простая одержимость полностью

При работе с функциями комплексной переменной полезно думать о комплексной плоскости как о бесконечно растяжимом резиновом листе, при этом спрашивая себя, что же функция делает с этим листом. По числам, выбранным на рисунке 13.2, можно видеть, что функция возведения в квадрат растягивает лист, закручивая его против часовой стрелки вокруг нулевой точки и одновременно вытягивая наружу. Число 2i, например, которое само по себе живет на положительной (северной) части мнимой оси, при возведении в квадрат отправляется в число −4, расположенное на отрицательной (западной) части вещественной оси, причем вдвое дальше от нулевой точки. В свою очередь −4 при возведении в квадрат растягивается до 16 (еще дальше от нуля) и попадает на положительную (восточную) часть вещественной оси. По правилу знаков число −2i, находящееся на отрицательной (южной) части мнимой оси, «докручивается» до числа −4. На самом деле, согласно правилу знаков, всякое[113] значение функции возведения в квадрат встречается дважды, возникая при двух аргументах: не будем забывать, что −4 есть квадрат не только числа 2i, но и числа −2i.

Бернхард Риман, обладавший, судя по всему, чрезвычайно развитым зрительным воображением, представлял себе это таким образом. Возьмем всю комплексную плоскость. Проведем разрез вдоль отрицательной (западной) части вещественной оси, остановившись в точке нуль. Теперь ухватимся за верхний край этого разреза и потянем его против часовой стрелки, поворачивая вокруг точки нуль, как будто туда встроен шарнир. Повернем этот край на 360 градусов. Теперь наш край разреза находится над растянутым листом, а другой край расположен прямо под ним. Проведем наш край через лист (для этого следует представить себе, что комплексная плоскость не только бесконечно растяжима, но и сделана из некоторого рода туманной субстанции, которая может проходить сама сквозь себя) и склеим оба края исходного разреза. Картинка у нас в голове теперь выглядит примерно так, как показано на рисунке 13.3. Вот что функция возведения в квадрат делает с комплексной плоскостью.

Рисунок 13.3. Риманова поверхность, отвечающая функции z2.

Это вовсе не досужие изыски. На основе такого мысленного упражнения Риман развил целую теорию, впоследствии названную теорией римановых поверхностей. Она содержит ряд мощных результатов и дает глубокое понимание того, как ведут себя функции комплексной переменной. Она также соединяет теорию функций с алгеброй и топологией — двумя ключевыми областями математики XX столетия. А главное — она представляет собой типичный продукт дерзкого, бесстрашного и самобытного воображения, которым обладал Риман, — продукт одного из величайших умов, вообще когда-либо существовавших.

VI.

Я воспользуюсь гораздо более простым подходом для иллюстрации функций комплексной переменной. Позвольте представить моего друга, муравья по имени Арг; он перед вами на рисунке 13.4.

Рисунок 13.4. Муравей Арг.

Муравья Арга невероятно трудно разглядеть, потому что он имеет бесконечно малый размер. Но если бы мы могли его видеть, то обнаружили бы, что он выглядит совсем как обычный муравей — если уж быть точным, то как рабочий Camponotus japonicus — с соответствующим числом лапок, усиков и прочего. В одной из своих передних лапок, которую можно для удобства называть «рукой», муравей Арг держит приборчик вроде пейджера, или мобильного телефона, или одного из тех устройств для глобального позиционирования, что всегда сообщают вам, где именно вы находитесь. На этом приборчике (рис. 13.5) имеются три окошка. В первом окошке, под которым написано «функция», показано название некоторой функции: z2, ln z и т.д. — в общем, на приборчике можно выставить любую функцию. Во втором окошке, под которым написано «аргумент», показана точка — т.е. комплексное число, — на которой муравей Арг стоит в данный момент. И в третьем окошке, с подписью «значение функции», показано значение выбранной функции при данном аргументе. Таким образом, муравей Арг всегда точно знает, где находится; а для любой заданной функции он знает, кроме того, куда данная функция отправляет точку, на которой он стоит.

Рисунок 13.5. Муравьиный приборчик.

Моя задача состоит в том, чтобы показать вам дзета-функцию, И поэтому я собираюсь отправить муравья Арга свободно бродить по комплексной плоскости.[114] Когда в окошке «значение функции» показан нуль, это значит, что Арг стоит на точке («аргументе»), которая является нулем дзета-функции. Я договорюсь с ним, чтобы он отмечал эти точки волшебным маркером, который он носит в маленьком кармашке на брюшке. Тогда мы сможем узнать, где располагаются нули дзета-функции.

Перейти на страницу:

Все книги серии Элементы

Мозг и душа. Как нервная деятельность формирует наш внутренний мир
Мозг и душа. Как нервная деятельность формирует наш внутренний мир

Знаменитый британский нейрофизиолог Крис Фрит хорошо известен умением говорить просто об очень сложных проблемах психологии – таких как психическая деятельность, социальное поведение, аутизм и шизофрения. Именно в этой сфере, наряду с изучением того, как мы воспринимаем окружающий мир, действуем, делаем выбор, помним и чувствуем, сегодня и происходит научная революция, связанная с внедрением методов нейровизуализации. В книге "Мозг и душа" Крис Фрит рассказывает обо всем этом самым доступным и занимательным образом.УДК 159.9:616.89ББК 88.3+56.14ISBN: 978-5-271-28988-0 (ООО "Издательство Астрель")© Chris D. Frith, 2007All Rights Reserved. Authorised translation from the English language edition published by Blackwell Publishing Limited. Responsibility for the accuracy of the translation rests solely with The Dynasty Foundation and is not the responsibility of John Blackwell Publishing Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, Blackwell Publishing Limited.© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2010© П. Петров, перевод на русский язык, 2010© А. Бондаренко, художественное оформление, макет, 2010© ООО "Издательство Астрель", 2010Издательство CORPUS ®Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Кристофер Фрит , Крис Фрит

Биология, биофизика, биохимия / Биология / Психология / Образование и наука
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Мутанты
Мутанты

Для того, чтобы посмотреть, как развивается зародыш, Клеопатра приказывала вспарывать животы беременным рабыням. Сегодня мы знаем о механизмах, которые заставляют одну-единственную клетку превращаться сначала в эмбрион, после – в ребенка, а затем и во взрослого человека, несравненно больше, чем во времена жестокой египтянки, однако многие вопросы по-прежнему остаются без ответов. Один из основных методов исследовать пути формирования человеческого тела – это проследить за возникающими в этом процессе сбоями или, как говорят ученые, мутациями. Именно об этих "неполадках", приводящих к появлению сиамских близнецов, двухголовых ягнят и прочих мутантов, рассказывает в своей увлекательной и порой шокирующей книге британский биолог Арман Мари Леруа. Используя истории знаменитых "уродцев" в качестве отправной точки для своих рассуждений, автор подводит читателя к пониманию сложных законов, позволяющих человеческим телу на протяжении многих поколений сохранять относительную стабильность, оставаясь при этом поразительно многообразным.УДК 575-2ББК 28.704ISBN 978-5-271-24665-4 (ООО "Издательство Астрель")© Armand Marie Leroi, 2003© Фонд Дмитрия Зимина "Династия", российское издание, 2009© Е. Година, перевод на русский язык, 2009© А. Бондаренко, оформление, 2009Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Арман Мари Леруа

Биология, биофизика, биохимия

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное