Читаем Простая одержимость полностью

На самом деле я попрошу муравья Арга потрудиться еще немного. Пусть он отмечает все аргументы, которые дают чисто вещественное или чисто мнимое значение функции. Он отметит аргумент, при котором значение функции равно 2, или −2, или 2i, или −2i; а точку, в которой значение функции равно 3,7i, он отмечать не будет. Другими словами, он отметит все точки, которые дзета-функция отправляет на вещественную ось или на мнимую ось таким способом мы получим нечто вроде картинки, представляющей дзета-функцию.

На рисунке 13.6 представлен результат этой одиссеи. Прямыми линиями на ней показаны вещественная и мнимая оси, а также критическая полоса. Все кривые линии составлены из точек, которые дзета-функция отправляет на вещественную или мнимую оси. Разумеется, поскольку вещественная и мнимая оси пересекаются в нуле, нулями дзета-функции будут как раз точки, где эти линии пересекаются. В точках, где каждая из этих кривых уходит с рисунка, подписано значение функции, соответствующее этой точке.

Рисунок 13.6. Плоскость аргумента. Показаны точки, которые дзета-функция отправляет на вещественную или мнимую оси.

Попытка представить себе, что же дзета-функция делает с комплексной плоскостью — в том же духе, как на рисунке 13.3, где показано, что делает с ней функция возведения в квадрат — это упражнение, требующее довольно серьезного умственного напряжения. Если функция возведения в квадрат заворачивает комплексную плоскость саму над собой в двулистную поверхность, изображенную на рисунке 13.3, то дзета-функция делает подобную же вещь бесконечное число раз, что дает бесконечнолистную поверхность. Не расстраивайтесь, если не получается такое себе представить. Чтобы начать интуитивно воспринимать подобные функции, требуется практика в течение нескольких лет. Как я уже говорил, наш подход будет попроще.

Муравей Арг разметил комплексную плоскость так, что получились узоры, показанные на рисунке 13.6. Теперь отправим его путешествовать вдоль одной из этих кривых. Пусть он выходит из точки −2. Поскольку это нуль дзета-функции — один из тривиальных нулей, — окошко «значение функции» показывает 0. А муравей собирается ползти на запад вдоль вещественной оси. Значения функции начинают отодвигаться от нуля.

Вскоре после прохождения точки −2,717262829 при движении на запад окошко «значение функции» покажет число 0,009159890…. Затем число в этом окошке начнет снова уменьшаться до нуля. Поскольку вы читали главу 9, то вполне можете догадаться, что должно произойти. Значение функции будет убывать и убывать до нуля, который и будет достигнут при аргументе −4.

Это оказалось не слишком интересным. Начнем снова. Из точки −2, где показание «значение функции» равно 0, муравей Арг отправится на запад в точку, где значение функции было наибольшим. Но вместо того, чтобы продолжать путь на запад до −4, он резко поворачивает направо и берет курс на север вдоль верхней ветви напоминающей параболу кривой. Теперь значение функции будет все возрастать и возрастать — сначала оно достигнет значения 0,01, затем 0,1, потом (вскоре после пересечения с мнимой осью) достигнет 0,5. И когда муравей устремится на восток по верхней ветви «параболы», значение продолжит расти. Когда муравей выйдет за пределы страницы, направляясь при этом уже почти точно на восток, показание в окошке будет составлять 0,9990286. Оно все еще продолжает возрастать, но страшно медленно, и муравью придется прошагать всю дорогу до бесконечности, пока в окошке не появится 1.

Оказавшись на бесконечности, муравей Арг может захотеть развернуться и пойти обратно. Но чтобы ему не возвращаться той же дорогой, отправим его домой вдоль положительной части вещественной оси. (Не ломайте себе голову на этот счет слишком сильно. Для наших целей на самом деле имеется всего одна «точка на бесконечности», так что, раз оказавшись там, можно отправиться назад в мир настоящих конечных чисел вдоль вообще любого направления). Показания в окошке «значение функции» теперь возрастают: там будет высвечено 1,0009945751… в момент возвращения на рисунок, 1,644934066848… в момент, когда муравей Арг проходит 2 (помните базельскую задачу?), а потом при подходе к 1 показания резко взлетают вверх.

Когда муравей Арг наступает на число 1, из приборчика, который он держит в руке, раздается звонок, а в окошке «значение функции» загорается большой ярко-красный мигающий знак бесконечности ∞. Если муравей Арг посмотрит на это окошко повнимательнее, он обнаружит занятную вещь. Справа от знака бесконечности очень быстро вспыхивает и гаснет маленькая буква i. Одновременно с этим слева от бесконечности загорается и гаснет знак минус, причем тоже очень быстро, но рассогласованно с пульсациями буквы i. Дело выглядит так, будто бы окошко пытается одновременно показать четыре различных значения: ∞, −∞, ∞i и −∞i. Занятно!

Перейти на страницу:

Все книги серии Элементы

Мозг и душа. Как нервная деятельность формирует наш внутренний мир
Мозг и душа. Как нервная деятельность формирует наш внутренний мир

Знаменитый британский нейрофизиолог Крис Фрит хорошо известен умением говорить просто об очень сложных проблемах психологии – таких как психическая деятельность, социальное поведение, аутизм и шизофрения. Именно в этой сфере, наряду с изучением того, как мы воспринимаем окружающий мир, действуем, делаем выбор, помним и чувствуем, сегодня и происходит научная революция, связанная с внедрением методов нейровизуализации. В книге "Мозг и душа" Крис Фрит рассказывает обо всем этом самым доступным и занимательным образом.УДК 159.9:616.89ББК 88.3+56.14ISBN: 978-5-271-28988-0 (ООО "Издательство Астрель")© Chris D. Frith, 2007All Rights Reserved. Authorised translation from the English language edition published by Blackwell Publishing Limited. Responsibility for the accuracy of the translation rests solely with The Dynasty Foundation and is not the responsibility of John Blackwell Publishing Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, Blackwell Publishing Limited.© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2010© П. Петров, перевод на русский язык, 2010© А. Бондаренко, художественное оформление, макет, 2010© ООО "Издательство Астрель", 2010Издательство CORPUS ®Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Кристофер Фрит , Крис Фрит

Биология, биофизика, биохимия / Биология / Психология / Образование и наука
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Мутанты
Мутанты

Для того, чтобы посмотреть, как развивается зародыш, Клеопатра приказывала вспарывать животы беременным рабыням. Сегодня мы знаем о механизмах, которые заставляют одну-единственную клетку превращаться сначала в эмбрион, после – в ребенка, а затем и во взрослого человека, несравненно больше, чем во времена жестокой египтянки, однако многие вопросы по-прежнему остаются без ответов. Один из основных методов исследовать пути формирования человеческого тела – это проследить за возникающими в этом процессе сбоями или, как говорят ученые, мутациями. Именно об этих "неполадках", приводящих к появлению сиамских близнецов, двухголовых ягнят и прочих мутантов, рассказывает в своей увлекательной и порой шокирующей книге британский биолог Арман Мари Леруа. Используя истории знаменитых "уродцев" в качестве отправной точки для своих рассуждений, автор подводит читателя к пониманию сложных законов, позволяющих человеческим телу на протяжении многих поколений сохранять относительную стабильность, оставаясь при этом поразительно многообразным.УДК 575-2ББК 28.704ISBN 978-5-271-24665-4 (ООО "Издательство Астрель")© Armand Marie Leroi, 2003© Фонд Дмитрия Зимина "Династия", российское издание, 2009© Е. Година, перевод на русский язык, 2009© А. Бондаренко, оформление, 2009Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Арман Мари Леруа

Биология, биофизика, биохимия

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное