Геттинген, конечно, был не единственным местом на земле, где в первые годы XX века создавалась первоклассная математика. Взглянем на английского математика Джона Идензора Литлвуда за шестьдесят с чем-то лет до того, как он предлагал «понюхать пороху» Хью Монтгомери. В 1907 году, будучи молодым математиком в Тринити-колледже в Кембридже, Литлвуд был занят поиском содержательной задачи, из которой удалось бы вырвать хороший «кусок мяса» для диссертации.
Барнс[117] решился предложить такую новую задачу: «Доказать Гипотезу Римана». В конце концов оказалось, что это героическое предложение привело к некоторым результатам; но сначала надо сказать о ситуации с
Это отрывок из «Математической смеси» Литлвуда — причудливого собрания мемуарных фрагментов, шуток и математических головоломок, впервые опубликованного в 1953 году.[119] Кроме самого Литлвуда, действующие лица в приведенном отрывке — это английский математик Годфри Хэролд Харди (1877-1947) и немец Эдмунд Ландау (1877-1938). Эти трое — Ландау, Харди, Литлвуд — через полпоколения после Гильберта были пионерами в ранних попытках одолеть Гипотезу Римана.
Британская математика в XIX столетии демонстрировала странную асимметрию в своем развитии и достижениях. Британские ученые добились значительных успехов в наименее абстрактных областях математики — тех, которые ближе всего связаны с физикой. Такое наблюдение — результат моего высшего математического образования, полученного в Лондоне. Когда у нас были занятия по вещественному анализу, теории функций комплексной переменной, теории чисел и алгебре, фамилии ученых в названиях теорем сыпались на нас с той стороны Ла-Манша: Коши, Адамар, Якоби, Чебышев, Риман, Эрмит, Банах, Гильберт… А потом мы шли на лекции по ММФ (т.е. по методам математической физики) и внезапно снова оказывались на Британских островах викторианской эпохи: теорема Грина (1828), формула Стокса (1842), число Рейнольдса (1883), уравнения Максвелла (1855), оператор Гамильтона (1834)…