Читаем Простая одержимость полностью

Но, как и в случае с дзета-функцией вещественных аргументов, для расширения области определения в те области, где бесконечная сумма не сходится, можно применить некоторые математические уловки. В результате получается полная дзета-функция, область определения которой составляют все комплексные числа за единственным исключением числа s = 1. Там, как мы еще в самом начале убедились при помощи колоды карт (см. главу 1), у дзета-функции нет значения. Везде, кроме этой точки, она имеет единственным образом определенное значение. Имеются, конечно, и такие места, где это значение нулевое. Это мы и раньше знали. Графики из главы 9.iv показывают, что дзета-функция принимает равное нулю значение для всех отрицательных четных чисел −2, −4, −8, …. Мы на них не останавливаемся, потому что, как уже было замечено, они не слишком важны. Это тривиальные нули дзета-функции. Могло ли бы так случиться, что значение дзета-функции равно нулю при некоторых комплексных аргументах? И что, это и будут нетривиальные нули, упоминаемые в Гипотезе? Делайте ваши ставки; но я несколько забежал вперед в нашей истории.

IV.

Сорок лет назад блестящий, но эксцентричный Теодор Эстерман[112] написал учебник, озаглавленный «Комплексные числа и функции», в котором содержались всего два рисунка. «Я <… > избежал всякого обращения к геометрической интуиции», — объявлял автор в предисловии. Известно некоторое число родственных ему душ, однако большая часть математиков не следует подходу Эстермана. Они трактуют теорию функций комплексной переменной в высшей степени визуально. Многие из нас полагают, что функции комплексной переменной легче освоить, пользуясь некоторыми наглядными образами.

Но как же можно наглядно представить себе функцию комплексной переменной? Возьмем простейшую нетривиальную функцию комплексной переменной — функцию возведения в квадрат. Есть ли какой-нибудь способ узнать, на что она похожа?

Скажем сразу: от обычных графиков толку здесь немного. В мире вещественных чисел можно изобразить функцию на графике таким образом: проводим прямую, изображающую аргументы (как мы помним, вещественные числа живут на прямой); затем проводим другую прямую под прямым углом к первой и используем ее для значений функции. Чтобы выразить тот факт, что данная функция превращает число x в число y, двигаемся на восток от нулевого аргумента на расстояние x (на запад, если x отрицательно), а затем на север от нулевого значения на расстояние y (на юг, если y отрицательно). Отмечаем там точку. Повторяем такое для стольких значений функции, сколько нам не лень вычислить. Это и дает график функции. На рисунке 13.1 приведен пример.

Рисунок 13.1. Функция x2.

Однако это не годится для функций комплексной переменной. Аргументам требуется двумерная плоскость, чтобы на ней расположиться, а значениям функции нужна еще одна двумерная плоскость. Так что для графика требуются четыре пространственных измерения: два для аргументов и два для значений функции. (В четырехмерном пространстве, хотите верьте, хотите нет, две двумерные плоскости могут пересекаться в единственной точке. Это можно сравнить с тем фактом — совершенно недоступным для понимания обитателей двумерной вселенной, — что в трехмерии две непараллельные прямые не обязаны пересекаться.)

Это разочаровывает; но в качестве компенсации имеется кое-что, что можно делать для создания картинок, представляющих функции комплексной переменной. Вспомним то главное, что надо знать про функцию: она превращает одно число (аргумент) в другое (значение). Так вот, число-аргумент представляет собой точку где-то на комплексной плоскости, а значение функции представляет собой некоторую другую точку. Таким образом, функция комплексной переменной отправляет все точки из своей области определения в другие точки. Можно выбрать какие-то точки и посмотреть, куда они отправляются.

На рисунке 13.2, например, показаны числа, образующие стороны некоторого квадрата на комплексной плоскости. Углы отмены буквами a, b, c и d. Это в действительности комплексные числа −0,2 + 1,2i, 0,8 + 1,2i, 0,8 + 2,2i и −0,2 + 2,2i.

Рисунок 13.2. Функция z2, примененная к квадрату.

Что с ними произойдет при применении функции возведения в квадрат? Если умножить число −0,2 + 1,2i само на себя, то получится −1,4 − 0,48i; значит, таково значение функции для точки a. Возведение в квадрат чисел, соответствующих точкам b, c и d, дает значения для всех остальных углов; эти значения отмечены как A, B, C и D. Если повторить это для всех точек вдоль сторон квадрата, а также для точек, образующих сетку внутри него, получится искаженный квадрат, также изображенный на рисунке 13.2.

V.
Перейти на страницу:

Все книги серии Элементы

Мозг и душа. Как нервная деятельность формирует наш внутренний мир
Мозг и душа. Как нервная деятельность формирует наш внутренний мир

Знаменитый британский нейрофизиолог Крис Фрит хорошо известен умением говорить просто об очень сложных проблемах психологии – таких как психическая деятельность, социальное поведение, аутизм и шизофрения. Именно в этой сфере, наряду с изучением того, как мы воспринимаем окружающий мир, действуем, делаем выбор, помним и чувствуем, сегодня и происходит научная революция, связанная с внедрением методов нейровизуализации. В книге "Мозг и душа" Крис Фрит рассказывает обо всем этом самым доступным и занимательным образом.УДК 159.9:616.89ББК 88.3+56.14ISBN: 978-5-271-28988-0 (ООО "Издательство Астрель")© Chris D. Frith, 2007All Rights Reserved. Authorised translation from the English language edition published by Blackwell Publishing Limited. Responsibility for the accuracy of the translation rests solely with The Dynasty Foundation and is not the responsibility of John Blackwell Publishing Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, Blackwell Publishing Limited.© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2010© П. Петров, перевод на русский язык, 2010© А. Бондаренко, художественное оформление, макет, 2010© ООО "Издательство Астрель", 2010Издательство CORPUS ®Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Кристофер Фрит , Крис Фрит

Биология, биофизика, биохимия / Биология / Психология / Образование и наука
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Мутанты
Мутанты

Для того, чтобы посмотреть, как развивается зародыш, Клеопатра приказывала вспарывать животы беременным рабыням. Сегодня мы знаем о механизмах, которые заставляют одну-единственную клетку превращаться сначала в эмбрион, после – в ребенка, а затем и во взрослого человека, несравненно больше, чем во времена жестокой египтянки, однако многие вопросы по-прежнему остаются без ответов. Один из основных методов исследовать пути формирования человеческого тела – это проследить за возникающими в этом процессе сбоями или, как говорят ученые, мутациями. Именно об этих "неполадках", приводящих к появлению сиамских близнецов, двухголовых ягнят и прочих мутантов, рассказывает в своей увлекательной и порой шокирующей книге британский биолог Арман Мари Леруа. Используя истории знаменитых "уродцев" в качестве отправной точки для своих рассуждений, автор подводит читателя к пониманию сложных законов, позволяющих человеческим телу на протяжении многих поколений сохранять относительную стабильность, оставаясь при этом поразительно многообразным.УДК 575-2ББК 28.704ISBN 978-5-271-24665-4 (ООО "Издательство Астрель")© Armand Marie Leroi, 2003© Фонд Дмитрия Зимина "Династия", российское издание, 2009© Е. Година, перевод на русский язык, 2009© А. Бондаренко, оформление, 2009Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Арман Мари Леруа

Биология, биофизика, биохимия

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное