«Под “пространством” в математике понимают вообще любую совокупность однородных объектов (явлений, состояний, функций, фигур, значений переменных и т.п.), между которыми имеются отношения, подобные обычным пространственным отношениям (непрерывность, расстояние и т.п.). При этом, рассматривая данную совокупность объектов как пространство, отвлекаются от всех свойств этих объектов, кроме тех, которые определяются этими принятыми во внимание пространственно подобными отношениями. Эти отношения определяют то, что можно назвать строением или «геометрией» пространства. Сами объекты играют роль «точек» такого пространства; «фигуры» – это множество его «точек». Предмет геометрии данного пространства составляют те свойства пространства и фигур в нем, которые определяются принятыми в расчет пространственно подобными отношениями. Так, например, при рассмотрении пространства непрерывных функций вовсе не занимаются свойствами отдельных функций самих по себе. Функция играет здесь роль точки, и, стало быть, «не имеет частей», не имеет в этом смысле никакого строения, никаких свойств вне связи с другими точками; точнее, от всего этого отвлекаются. В функциональном пространстве свойства функций определяют только через их отношения друг к другу – через расстояния и через другие отношения, которые можно вывести из расстояния»[143].
Для того чтобы раскрыть закономерности, внутренние для пространственных свойств объектов, необходимо подвергнуть анализу данное свойство, выделить в нем его абстрактные аналитические компоненты и установить зависимость между ними, восстанавливающую целостный образ данного свойства.
Такими внутренними для геометрических свойств компонентами являются точки, прямые, плоскости. Отношения, связывающие эти геометрические объекты внутренним для исследуемого свойства способом, суть отношения инцидентности, порядка, конгруэнтности, параллельности, непрерывности. «Мы мыслим три различные системы вещей: вещи первой системы мы называем
Все эти геометрические объекты или «вещи», как выражается Гильберт, имеют лишь относительное значение, имеют смысл лишь постольку, поскольку они рассматриваются в систематической связи друг с другом, описывающей внутреннее строение геометрических свойств реальности. Совершенно бессмысленно ставить вопрос об их объективном значении вне этой системы отношений, так как объективным значением обладает лишь вся система в целом, но никак не ее отдельные элементы.
Аксиоматика поэтому вовсе не открывает путь в некое царство хрупких геометрических объектов, доступных лишь умозрению, отличных от физических, чувственно постигаемых объектов. Аксиоматика позволяет раскрыть рациональную форму зависимости эмпирически данных свойств, состоящую (как уже было показано выше) в установлении отношений между однородными фактами.
С помощью аксиоматики объекты теории не задаются, но лишь определяется форма их рационального постижения, способ анализа опытных данных. Этот способ, в котором выражается внутреннее строение исследуемого свойства, должен оставаться неизменным на протяжении всего исследования, что и является причиной дедуктивного построения математических теорий.
Область внутренних отношений предмета математической теории оказывается доступной только через аксиоматику, которая поэтому играет такую большую роль в математике. «Можно сказать, что количественные отношения суть
Таким образом, объекты математики должны быть выделены, отвлечены от других объектов в реальности и рассмотрены в чистом виде. Для того чтобы определить количественные свойства вещей в явной, расчлененной, эксплицитной понятийной форме, опытные данные необходимо подвергнуть анализу, изолировать количественные свойства и представить их в чистом виде, расчленить имплицитное и установить внутри него зависимости и отношения, выявить внутренние для данного свойства связи и закономерности, т.е. сделать то, что делается, например, при выявлении аксиом математической теории и ее основных понятий.