Читаем Монизм как принцип диалектической логики полностью

Сказать нечто об одной из сторон или углов треугольника – значит вместе с тем определить его другую сторону или угол. Сказать нечто о радиусе – значит тем самым определить и окружность. Окружность, конечно, не то же самое, что радиус. Это прекрасно знает, скажем, инженер, когда он строит маховое колесо двигателя. Но для геометра окружность есть именно такой образ, свойства которого определяются как производные от радиуса, как преобразование определенности радиуса. Ее самостоятельная определенность не принимается во внимание.

В аксиоматике теории вырабатывается система средств выражения для данной области объектов. Все, что рассматривается в этой области, должно быть выражено в ее системе средств, так сказать, сконструировано из этого «материала». Все, что не может быть сконструировано подобным образом, лежит вне пределов данной науки и потому оказывается для нее недействительным. Оно существует лишь по отношению к данной системе средств.

На этот счет можно привести следующий пример.

В аналитической геометрии Декарта устраняются «трансцендентные» кривые, которые с точки зрения их построения в созерцании не представляют собой чего-либо особо сложного. Однако при тех средствах анализа, которыми располагал Декарт, их построение оказалось невозможным. Введение нового способа анализа пространственных форм и соотношений с помощью координатной системы ограничивает область геометрии. Разработка более гибких и универсальных средств позволяет рассмотреть в геометрии и первоначально устраненные «трансцендентные» кривые.

С этой точки зрения можно рассмотреть и всю историю геометрии. Как известно, число геометрических образов, рассматриваемых в «Началах» Евклида, невелико: прямая, плоскость, окружность, сфера, цилиндр, конус и т.п. Разработанные же в XVIII в. методы дифференциальной геометрии позволяют рассмотреть бесконечное множество различных линий, поверхностей и их совокупностей. Условием этого анализа является только дифференцируемость функций, входящих в уравнения этих образов.

При определении какого-либо свойства реальных объектов, скажем, пространственного свойства, мы имеем дело с некоторой системой понятий, в которых оно выражается. Эта система понятий определенна. Свойство становится определенным также и теоретически посредством некоторой операции определения. Эта операция состоит в выражении его через преобразование уже имеющейся системы средств выражения. Если в эмпирическом познании определенность данного свойства рассматривается как данная, как продукт физических процессов, совершающихся независимо от мышления, то в логическом познании определенность некоторого созерцаемого свойства есть не исходный пункт, а продукт известной операции выражения и определения. В математике поэтому принимаются во внимание только такие предложения, которые представляют собой продукт преобразования некоторой принятой системы выражения, продукт композиции ее элементов. Акт математического познания поэтому является с логической стороны актом творческим, актом продуцирования данного свойства, его построения: в некоторой данной системе средств, но не актом описания. Это продуцирование, однако, является продуцированием не самой «вещи», но только ее теоретического образа, ее «модели».

Всякий геометрический объект определяется относительно некоторой однородной среды, закономерности которой, повсюду одинаковые, обусловливают свойства конкретного объекта, рассматриваемого в ней. Так, мы убеждены, что все геометрические фигуры суть некоторым образом «одно и то же», что они внутренне тождественны. Только при этом условии и возможно строго математическое познание.

Историческое развитие геометрии состояло в том, что это убеждение все более и более овладевало умами геометров.

Для геометрии древних характерно самостоятельное рассмотрение геометрических фигур сообразно особенностям их индивидуальной наглядной определенности. Так, например, круг и эллипс с точки зрения непосредственного созерцания представляются сущностями различных порядков, поэтому определение свойств каждой из них осуществлялось индивидуально. Отдельная фигура рассматривалась как самодовлеющая единица. Разумеется, между кругом и эллипсом можно подметить некоторое внешнее сходство, однако оно не касается существа.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия

Все жанры