Читаем Монизм как принцип диалектической логики полностью

Методы аналитической геометрии Декарта и современной дифференциальной геометрии, теории групп или проективной геометрии позволяют установить единый метод непрерывного преобразования любой самой сложной фигуры в другую. То, что в геометрии древних решается путем сложных и разрозненных операций, аналитическая геометрия разрешает более простым и единообразным способом. Так, например, теория конических сечений была построена еще Аполлонием Пергским (265-217 гг. до н.э.), но его изложение имело чрезвычайно сложную форму. То, что у Аполлония распадается на восемьдесят отдельных операций, сопровождаемых построением отдельных элементарных фигур, аналитическая геометрия решает путем немногих простых операций. Все конические сечения выражаются в декартовых координатах уравнениями 2-й степени, и построение их теории было сведено к исследованию таких уравнений[142].

Аналитическая геометрия Декарта позволяет свести сложное дискретное многообразие индивидуальных синтетических фигур, кривых и т.п. к числовому единообразию их аналитического выражения в координатной системе, к некоторому непрерывному числовому ряду с едиными, однородными закономерностями. В этой системе индивид уже не представляется самодовлеющей единицей познания. Наоборот, всякая индивидуальная определенность есть продукт известного состояния некоторой универсальной среды, между индивидами поэтому нет такого различия, которое бросается в глаза при их синтетическом исследовании, т.е. в непосредственном созерцании. Различия между отдельными геометрическими образами здесь находятся не «наряду» с определенными тождественными чертами, но вытекают из их тождественной сущности в соответствии с законами геометрии.

При дедуктивном построении геометрии мышление исходит не из отдельных геометрических объектов, но из одной и непрерывной закономерности, которая и определяет индивидуумы в их особенностях, из некоторого единого метода построения всей совокупности объектов. Изолированные пространственные формы, «образы», которые в своей индивидуальности даже боготворились греками, рассматривавшими их как некоторые индивидуальные сущности, «эйдосы» (треугольник, сфера и т.п. или тройка, семерка у пифагорейцев), были развенчаны и сведены к ряду некоторых простейших и всеобщих соотношений.

Любая геометрическая фигура рассматривается в аналитической геометрии как организованное множество точек, каждая из которых согласно координатному методу определена ее расстоянием от осей координат. Это расстояние подчиняется некоторому числовому закону. Но расстояние есть нечто такое, в чем данная фигура уже не существует в форме своей исключительной, индивидуальной определенности.

Расстояние, взятое в его числовом выражении, есть ее «плебейская», рядовая сущность. Эта ее сущность и раскрывается аналитическим методом. Особенности фигуры, синтетически представляющиеся неразложимыми, при аналитическом методе сводятся к ординарным особенностям числового ряда. Это и позволяет единообразно рассмотреть все царство индивидуальностей. Введение в геометрию дифференциальных методов еще более расширило ее возможности в этом направлении.

Первым успехом дифференциальной геометрии было создание (XVIII в.) работами Эйлера, Лагранжа и Монжа теории кривых линий и основы теорий поверхностей. В этих работах дифференциальная геометрия еще не рассматривалась, однако как самостоятельная дисциплина она представляла собой приложение анализа к геометрии. Выход в свет в 1827 г. сочинения К.Ф. Гаусса «Рассуждение о кривых поверхностях» положил начало существованию дифференциальной геометрии как самостоятельной дисциплины.

То же следует сказать и о геометрии синтетической, проективной, аффинной, конформной и т.п.

В проективной геометрии, например, рассматриваются не отдельные фигуры, но их закономерная и непрерывная связь, позволяющая рассматривать свойства одной фигуры как проективное преобразование другой, т.е. логическую зависимость определения одной фигуры через тождественное преобразование определенности другой. (Условия этого тождественного преобразования формулируются в аксиоматике: при проективных преобразованиях остаются тождественными отношения инцидентности точки и прямой, касания прямой и какой-либо линии, ангармоническое отношение четырех точек или четырех прямых и т.п., но существенно искажаются соотношения метрические; при конформных преобразованиях остаются инвариантными углы между любыми линиями; в топологии рассматриваются свойства, остающиеся инвариантными при всех изменениях фигуры, за исключением тех, которые приводят к ее «разрыву» или «растяжению».)

В целях сохранения непрерывности связи и выводимости одних фигур из других Понселе вводит в проективную геометрию широко применяемый в современной математике метод «идеальных элементов», например «бесконечно удаленной точки», которая с точки зрения созерцания совершенно бессмысленна. Тем не менее, как элемент связи преобразования такое понятие является истинным.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия