Читаем Монизм как принцип диалектической логики полностью

В проективной геометрии отдельная фигура рассматривается не сама по себе, но лишь как элемент, основные соотношения определенности которого строго фиксированы и из которого путем известных преобразований этих соотношений мы можем получить все многообразие других геометрических фигур как модификацию или трансформацию исходной определенности, а именно как непрерывное преобразование элементов, в которых выражается ее положение. Изменение этих элементов дает нам ряд пространственных образов, индивидуально различных и в то же время генетически связанных. Известные же соотношения которые были указаны выше, остаются инвариантными для всей системы в целом. Они-то и являются критерием проективного преобразования.

Инварианты непрерывного преобразования являются свойством не отдельной фигуры, а именно систематически рассматриваемой их совокупности. Ряд метаморфоз, которые претерпевает фигура при ее проективных преобразованиях, приводит в конце концов к такому образу, в котором трудно или совершенно невозможно усмотреть первоначальный образ, и тем не менее фигура, элементы которой установлены в аксиоматике, остается в своей определенности тождественной самой себе. Это и дает возможность за индивидуальной формой данной фигуры рассмотреть ее геометрическую сущность.

Математический генезис превращенной формы, разумеется, будет иметь только тот специфически логический смысл, о котором говорилось выше. Если некоторую фигуру, имеющую форму эллипса, мы рассматриваем как результат проективного преобразования круга, то это вовсе не значит, что в своем реальном генезисе объекты, имеющие форму эллипса, возникают из вида, имеющего форму круга.

Принцип анализа взаимных отношений геометрических объектов развивается и далее, и уже не только применительно к отдельным геометрическим фигурам в рамках той или иной (Евклидовой или неевклидовой) геометрии, но и применительно к самим отдельным геометриям и позволяет решать не только вопрос о свойствах отдельной геометрической фигуры, скажем, в Евклидовом пространстве, но и о месте самого Евклидова пространства в некотором обобщенном пространстве, например в геометрии Клейна или Римана.

Здесь становится совершенно ясным различие между геометрией как математикой и геометрией как физикой. В самом деле, если мы рассматриваем геометрию Евклида или Лобачевского как частные случаи геометрии Римана и если мы придаем их понятиям некоторый абсолютный физический смысл, например, трехмерности этих пространств, то говорить о месте трехмерного пространства в бесконечномерном пространстве Римана физически бессмысленно, хотя математически это имеет определенный и глубокий смысл. Трехмерное пространство не существует «в» бесконечномерном; относительно любого физического объекта мы можем сказать, что он существует только в трехмерном или, в крайнем случае, четырехмерном «пространстве-времени» Эйнштейна – Минковского, но никак не в бесконечномерном. О математическом же смысле такого существования стоит говорить.

Создание геометрии групп преобразований Клейна и геометрии Римана позволило обобщить не только свойства отдельных фигур в рамках той или иной геометрии или того или иного пространства, но сами геометрии и сами пространства в рамках более абстрактных математических пространств. При этом все более и более выяснялся математический характер геометрических понятий. Становилось все более явным, что геометрия изучает не те или иные субстанциальные пространственные формы, но отношения, подобные пространственным, независимо от абсолютного содержания компонентов этого отношения. Так, например, в современной геометрии рассматривается не только пространство точек и линий, но и «пространство» цветов, «фазовое пространство» какой-либо механической системы, функциональные пространства как совокупности объектов, каждый из которых не может быть задан конечным числом данных, т.е. бесконечномерные пространства.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия