Читаем Квантовая хромодинамика: Введение в теорию кварков и глюонов полностью

образует так называемую группу киральных преобразований, генерируемых токами (29.12). В рассматриваемом случае кварков трех ароматов n=3, мы приходим к группе киральных преобразований SU+F(3)xSU-F(3). Ее генераторы можно выразить, исходя из набора векторных и аксиальных токов43) Vll' и All' , введенных в § 10. Важной подгруппой группы SU+F(3)xSU-F(3) является генерируемая векторным током подгруппа, представляющая собой просто группу аромата SUF(3), введенную Гелл-Манном и Нееманом.

43) Не все диагональные элементы принадлежат группе SUF(3)xSUF(3), но они принадлежат группе UF(3)xUF(3).

Точность соблюдения симметрии связана с независимостью от времени зарядов L± , которые в свою очередь связаны с дивергенциями токов. Кроме диагональных аксиальных токов, эти дивергенции пропорциональны разностям кварковых масс ml-ml' для векторных токов и суммам кварковых масс ml+ml' для аксиальных токов (см. (10.5)). Таким образом, можно заключить, что группа симметрии SUF(3) достаточно точна до тех пор, пока выполнено неравенство |ml-ml'|^2^2, а группа киральной симметрии SU+F(3)xSU-F(3) до тех пор, пока выполнено условие m^2l^2. По-видимому, разность масс имеет тот же порядок величины, что и сами массы, поэтому ожидается, что киральная симметрия выполняется почти с той же степенью точности, что и симметрия по ароматам. Кажется, это действительно так44).

44) Киральная симметрия и киральная динамика представляют собой предмет специального изучения. Здесь мы касаемся только тех аспектов, которые имеют отношение к КХД. При этом многие важные применения опускаются. Заинтересованный читатель может обратиться к работам [213, 228] и цитируемой там литературе.

§ 30. Симметрии Вигнера - Вейля и Намбу - Голдстоуна

Из того, что киральная симметрия SU(3) и симметрия по ароматам кварков SUF(3) обладают одинаковой степенью точности, не следует, что эти симметрии реализуются одинаково. В действительности, как будет показано, существуют веские теоретические и экспериментальные причины, обуславливающие значительную разницу между ними.

Начнем с введения зарядов, обладающих определенной четностью:

Q

a

=L

a

+

+L

a

-

, Q

a

5

=L

a

+

-L

a

-

.

(30.1)

Одновременные коммутационные соотношения для них имеют вид

[Q

a

(t),Q

b

(t)]

=

2i

f

abc

Q

c

(t) ,

[Q

b

5

(t),Q

b

5

(t)]

=

2i

f

abc

Q

b

5

(t) ,

[Q

a

(t),Q

b

5

(t)]

=

2i

f

abc

Q

c

(t) .

(30.2)

Набор операторов Qa образует группу SUF(3). В пределе ml->0 все генераторы Q и Q5 не зависят от времени t и коммутируют с лагранжианом:

[Q

a

,L]=[Q

a

5

,L]=0 .

(30.3)

Однако различие между ними состоит в том, как эти операторы действуют на вакуумное состояние. В общем случае, если имеется совокупность генераторов Lj преобразований симметрии лагранжиана, мы имеем два возможных результата их действия на вакуумное состояние:

L

j

|0=0

(30.4)

и

L

j

|0/=0

(30.5)

Первый случай соответствует реализации симметрии Витера — Вейля, а второй — реализации симметрии Намбу — Голдсмоуна. Конечно, в общем случае оба эти типа реализации симметрии могут присутствовать одновременно; часть генераторов Li, i=1,…,r , удовлетворяет равенству (30.4), а остальные генераторы Lk, k=r+1,…,n , удовлетворяют равенству (30.5). Очевидно, что если операторы L1 и L2 удовлетворяют равенству (30.4), то этому же равенству удовлетворяет и их коммутатор. Следовательно, совокупность преобразований симметрий Вигнера - Вейля представляет собой подгруппу.

При рассмотрении данного круга вопросов важны две теоремы. Первая из них, установленная Коулменом [72], гласит, что "инвариантность вакуума означает инвариантность мира", или, более строго, что физические состояния (включая и связанные состояния) инвариантны по отношению к преобразованиям из группы симметрии Вигнера — Вейля. Если предположить, что киральная симметрия принадлежит к симметриям Вигнера — Вейля, то отсюда можно заключить, что массы мезонов должны быть вырождены с точностью до поправок порядка m^2/mh , где mh - адронные массы. Это справедливо для таких мезонов, как , , K*, или f', A2 , f0; но если рассмотреть дублеты по четности, то вырождения, очевидно, нет. Это обстоятельство убедительно свидетельствует о том, что группа симметрии SUF(3) принадлежит к симметрии Вигнера - Вейля, а киральная группа симметрии SU+FxSU-F содержит генераторы типа Намбу - Голдстоуна. Поэтому мы примем, что генераторы Q и Qs удовлетворяют соотношениям

Q

a

(t)|0=0 , Q

a

5

(t)|0/=0 .

(30.6)

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука