Читаем Квантовая хромодинамика: Введение в теорию кварков и глюонов полностью

В качестве примера частично сохраняющегося тока можно привести слабый аксиальный ток

A

qq'

(x)=:

q

(x)

5

q'(x): .

Используя уравнения движения (3.6), легко убедиться, что аксиальный ток удовлетворяет соотношениям

A

qq'

(x)=i(m

q

+m

q'

)J

5

qq'

(x) , J

5

qq'

(x)=:

q

(x)

5

q'(x): ,

(13.1 б)

из которых видно, что в пределе больших энергий, когда можно пренебречь массами кварков, он является сохраняющимся.

Вообще говоря, матричные элементы любого составного оператора представляют собой расходящиеся величины. Но если учесть контрчлены, входящие в лагранжиан КХД, то матричные элементы сохраняющихся и частично сохраняющихся токов оказываются конечными 21a). Физически это очевидно, формальное же доказательство этого утверждения будет приведено ниже.

21a) Отметим, что мы работаем в низшем порядке теории возмущений по слабому и электромагнитному взаимодействиям. В противном случае возникает необходимость включения в формулы слабых и электромагнитных перенормировочных множителей ZF, ZemF и т.д.

Несохраняющиеся операторы, как правило, требуют проведения перенормировки. Чтобы убедиться в этом, рассмотрим в качестве простого примера оператор i:qi(x)qi(x)M(x). Как уже обсуждалось в § 8 и 9, можно работать либо с неперенормированной величиной ququ и проводить вычисления, учитывая контрчлены, либо использовать перенормированную величину Z-1Fququ , проводя подстановки g->gu=Zgg для константы связи и m->mu=Zmm для массы и пренебрегая контрчленами. Тем не менее, вообще говоря, этого оказывается недостаточно, чтобы величина M была конечной. Для того чтобы получить конечные выражения для матричных элементов оператора M, необходимо умножить его на дополнительный множитель ZM, называемый перенормировочным множителем оператора:

M

R

(x)=Z

M

M(x) .

(13.2)

Чтобы доказать это утверждение, используем формулы § 3. При этом поля, отмеченные верхним или нижним индексом 0, являются свободными, например q0q0u или B0B0u. В терминах свободных полей оператор MR записывается в виде

M

R

(x)=Z

M

T:

q

0

(x)q

0

(x):

exp i

d

4

zL

0

int

(z) .

В низшем порядке теории возмущений по константе связи g это выражение принимает вид

M

R

(x)

=

Z

 

M

Z

-1

F

:

q

0

(x)q

0

(x):

=

-

g

2

2!

Z

M

d

4

z

1

d

4

z

2

T

:

q

0

(x)q

0

(x):

:

q

0

(z

1

)t

a

q

0

(z

1

):

x

q

0

(z

2

)t

b

q

0

(z

2

):

B

0a

(z

1

)

B

0b

(z

2

) .

(13.3)

Поскольку перенормировочный множитель оператора имеет вид ZM=1+O(g2), множителем ZM во втором слагаемом правой части (13.3) можно пренебречь. Рассмотрим далее расходящиеся матричные элементы, а именно матричные элементы MR по кварковым состояниям с равным импульсом p; нетрудно видеть, что характер расходимости в рассматриваемом примере одинаков как для диагональных, так и для недиагональных матричных элементов. Обозначим диагональные матричные элементы операторов M и MR соответственно через Mp и MRp. Тогда в калибровке Ферми-Фейнмана после простых вычислений из выражения (13.3) для этих матричных элементов получим

M

R

p

=

Z

 

M

Z

-1

F

M

0

p

+

iM

0

p

g

2

C

F

d

D

k

-

(

p

+

k

)(

p

+

k

)

k

2

(p+k)

4

+S

u

(p)+S

u

(p)

.

(13.4)

где

M

0

:

q

0

q

0

: .

Рис. 9. Перенормировка оператора qq.

Соответствующие фейнмановские диаграммы приведены на рис. 9. Первое слагаемое правой части (13.4) соответствует диаграмме рис. 9, а , два последних слагаемых - диаграмме рис. 9, б, а интеграл соответствует диаграмме рис. 9, в. Вычисления проведены в приближении безмассовых кварков. Легко убедиться в том, что пренебрежение массой кварков не влияет на характер расходимостей. Очевидно, что расходящаяся часть одного из кварковых пропагаторов Su в правой части (13.4) точно сокращается с фермионным перенормировочным множителем ZF; таким образом, остается только расходимость, связанная с интегралом:

-iC

F

g

2

d

D

k

(2)

D

4-D

0

k

2

(p+k)

2

div

=

 

4g

2

C

F

16

2

(/2)(4)

/2

0

.

Добавляя вклад от расходимости, обусловленной вторым кварковым пропагатором Su , получаем

Z

M

=1-

3C

F

g

4

2

+log 4-

E

-log

2

/

2

0

.

(13.5)

Вычисление перенормировочного множителя ZM проведено в калибровке Ферми-Фейнмана, но нетрудно убедиться, что он является величиной, не зависящей от калибровки.

Если бы мы провели вычисления не для величины qq, а, скажем, для величин qq или q5q' , то получили бы, что аномальные размерности этих операторов равны нулю. Как уже говорилось, это утверждение является частным случаем общего результата, к доказательству которого мы переходим. Пусть ток J представляет собой квазисохраняющийся оператор, т.е. в пределе, когда массы частиц стремятся к нулю, он удовлетворяет условию J(x)=0. Рассмотрим какое-нибудь хронологическое произведение произвольных полей i и тока J

J

(x)

1

(y

1

)…

N

(y

N

) .

Тогда, используя соотношение 0(x0-y0) = (x0-y0), можно получить тождество Уорда

J(x)1(y1)…N(yN)

=

(

J

(x))

1

(y

1

)…

N

(y

N

)

+

N

k=1

(x

0

-y

0

k

)

1

(y

1

)

[J

0

(x),

k

(y

k

)]

N

(y

N

) .

(13.6)

Пусть справедливо равенство

(x

0

-y

0

k

)[J

0

(x),

k

(y

k

]

=

'

k

(y)

k

(x-k

k

) ;

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука