До настоящего момента мы рассматривали операции над классами. Однако мы не сможем получить исчисления до тех пор, пока не предложим символическую запись для отношений между классами. Различие между операциями над классами и отношениями между классами заключается в том, что проведение операций над классами дает нам новые классы, а утверждение тех или иных отношений между классами дает суждения, а не классы. Основополагающим отношением мы будем рассматривать отношение включения в класс. Один класс будет считаться включенным в другой, если каждый член первого класса также является и членом второго. Если а и Ь являются классами, то суждение «а включен в Ь» мы будем обозначать как «а < Ь».
Отношение включения (<) является транзитивным и несимметричным, т. к. если а < b и Ь < с, то а < с. Но если а < b, то из этого еще не следует, что b < а. Мы можем определить равенство двух классов в терминах обоюдного включения. Класс а равен Ь, если а включен в Ь и Ь включен в а, т. е. если у них одни и те же члены. Символически это будет выглядеть так: (а = Ь) = (а < b). (Ь < а), где знак «=» обозначает равенство между классами, а знак «=» обозначает эквивалентность между суждениями, а точка («.») обозначает совместное утверждение двух суждений.
Принципы исчисления классов Чтобы начать исчисление, нужно установить ряд основополагающих принципов, которые будут совершенно недвусмысленно определять природу только что обсуждавшихся нами операций и отношений. Обычно предполагается следующий набор принципов.
1.
В этом принципе утверждается, что каждый класс включен в самого себя. Из данного принципа, а также из определения равенства следует, что а = а.
2.
= 0.
Ничто не является членом класса а и одновременно членом класса не-а.
3.
Каждый индивид универсума либо является членом а, либо членом не-а.
4.
а + Ь = Ь + а.
Проиллюстрировать данный принцип можно следующим образом: класс индивидов, являющихся одновременно немцами и музыкантами, это то же самое, что и класс индивидов, являющихся одновременно музыкантами и немцами; класс индивидов, являющихся немцами или музыкантами, это то же самое, что и класс индивидов, являющихся музыкантами или немцами.
5.
(
(
6.
(
В первой строчке выражен аналог хорошо известного свойства обычных чисел. Во второй же вводится значимое различие между предлагаемой алгеброй и ее обычным (вычислительным) видом.
7.
Эти два принципа заключают в себе радикальное различие между обычной (вычислительной) алгеброй и той, что предлагается здесь.
8.
9.
ab < a,
Из последних двух принципов следует, что нуль-класс включен в любой класс (0 < а) и что любой класс включен в универсум (а < 1). Чтобы наглядно в этом убедиться, нужно всего лишь допустить, что Ь = 0 в первом выражении и что Ь = 1 во втором выражении.
10.
[(
[(
Здесь мы, как обычно, используем символ «⊃» для обозначения отношения импликации и точку («.») для обозначения совместного утверждения обоих суждений. Первое выражение читается так: «Если
11.
[(
Если а включен в Ь и Ь включен в с, то а включен в с. Отношение «включен в» тем самым задается как транзитивное.
Выражение традиционных категорических суждений
Теперь выразим символически каждый из четырех видов категорических суждений.
Суждение «все а суть b» может быть выражено как «(а < b)». Более того, можно показать, что эта запись эквивалентна записи «(аb = 0)». Поэтому мы получаем: «(а <
) ≡ (
= 0)».
Суждение «ни один а не есть b» эквивалентно суждению «все а суть не‑». Следовательно, символически эта запись может быть выражена как «(a <
)». Однако данное выражение эквивалентно выражению «(ab = 0)», так что можно получить и следующую запись: «(a <
) ≡ (ab = 0)».
Частные суждения противоречат общим, и поэтому в них отрицается то, что утверждается в общих. Поэтому в суждении «некоторые а суть Ь» отрицается то, что ни один а не есть Ь (символически: a <
). Это обстоятельство может быть выражено как «(a <
)′» или как «(ab ≠ 0).
Суждение «некоторые а не суть b» должно противоречить суждению (а < b). Следовательно, его можно выразить как «(a < b)′» или как «(
≠ 0)».
Каждая из этих четырех символических форм должна быть знакома читателю по проведенному ранее анализу категорических суждений.