Читаем Введение в логику и научный метод полностью

Ниже мы предлагаем краткое описание общей теории классов суждений, которое хотелось бы предварить советом, взятым из работ Доджсона: «Если вы не поняли определенный отрывок, перечитайте его заново. Если он все равно остался непонятным, перечитайте его заново. Если, прочитав отрывок три раза, вы не достигли понимания, то, скорее всего, ваш мозг начал уставать. В этом случае отложите книгу и займитесь другими делами, а на следующий день, когда вы прочтете его свежим взглядом, он наверняка покажется вам вполне легким для понимания».

Из истории символической логики известно, что сначала была разработана теория классов, поскольку было изначально замечено, что аристотелевскую логику можно рассматривать как дисциплину, имеющую дело с взаимосвязями между классами. Однако при систематическом изложении принципов логики логика классов не занимает первого места относительно других принципов. Утверждать, что два класса находятся друг к другу в определенном отношении, означает утверждать определенное суждение. Любое исследование в рамках теории классов использует принципы теории суждений. Поэтому теория суждений предшествует любому другому исследованию в области логики и должна быть разработана в первую очередь. Однако в столь элементарном обсуждении, каким является наше исследование, данным обстоятельством можно пренебречь, поскольку наша основная цель заключается в том, чтобы указать на то направление, в котором может быть расширена традиционная логика, а не в том, чтобы предложить систематический анализ обобщенной логической теории. Поэтому ничего страшного не произойдет, если мы, изменив логическому порядку, проследим за хронологической последовательностью в разработке данных логических принципов.

Операции и отношения

Под термином «класс» мы будем понимать группу индивидуальных объектов, каждый из которых обладает определенными свойствами, благодаря которым он считается членом данного класса. Так, класс, обозначаемый термином «человек», является множеством отдельных людей, класс, обозначаемый термином «четное число», является множеством четных целых чисел и т. д. Таким образом, мы будем рассматривать классы относительно их объема. Область возможных классов называется универсумом рассуждения (предметной областью) или просто универсумом (областью). Он будет обозначаться символом «1». Может случиться так, что класс не будет содержать никаких членов. Например, класс людей ростом в двадцать футов не имеет членов, хотя и обладает определяющей характеристикой, а именно: человек ростом в двадцать футов. Такой класс будет называться нуль-классом и будет обозначаться символом «О». Понятие нуль-класса, несмотря на свою сложность для начинающих, имеет много технических преимуществ.

Существует три вида операций над классами, каждый из которых имеет собственное обозначение. Рассмотрим класс мужчин на универсуме людей. Исключив этот класс из указанного универсума, мы получим класс женщин. Индивиды, являющиеся членами универсума, но не являющиеся членами класса мужчин, будут обозначаться как «дополнение» к классу мужчин. Следовательно, женщины являются дополнением к классу мужчин на данном универсуме рассуждения. Класс и его дополнение исключают друг друга и исчерпывают универсум рассуждения. Если «а» представляет некий класс, то «не-a» представляет его отрицание.

Теперь рассмотрим два класса: английские книги и французские книги. Класс, содержащий английские или французские книги, называется логической суммой этих классов. Операция объединения классов подобным образом называется логическим сложением. Если а и Ь являются классами, то их логической суммой будет а + Ь. Читается это либо как «а плюс Ь», либо как «а или Ь». Данная дизъюнкция не является строгой. Символ «+» используется, поскольку логическое сложение обладает некоторыми формальными аналогиями по сравнению со сложением в обычной арифметике.

Далее рассмотрим класс профессоров и класс раздражительных людей. Предположим, мы хотим выбрать всех индивидов, которые являются членами обоих классов, чтобы получить класс раздражительных профессоров. Такая операция называется логическим умножением, а ее результат называется логическим произведением двух классов. Если а и Ь являются классами, то их произведение может быть обозначено как «а х b» или просто как «аЬ».

На данном этапе становится понятно, откуда берется идея нуль-класса. Мы полагаем, что, умножая классы, мы получаем классы. Логическим произведением классов женщин и водителей электровозов является класс женщин, являющихся водителями электровозов. Следовательно, этот класс будет классом, даже если в нем не будет ни одного члена.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия