Читаем Ценность ваших данных полностью

Эта категория данных на рисунке 8.1 не отражена, поскольку она тесно связана с категорией публичных данных. Термин «открытые данные» появился в 1995 году в американском научном сообществе в виде призыва свободно обмениваться данными. Несмотря на общую открытость публичных и открытых данных, между ними существует принципиальная разница. Она заключается в том, что использование публичных данных определяется законом – доступ к ним можно получить, например, по специальному запросу. Суть открытых данных в обратном – данные должны быть опубликованы еще до того, как кому-то понадобятся[323],[324].

<p>8.2. Классификация данных</p>

На практике при организации управления данными их обычно классифицируют по следующим признакам.

По назначению и области применения обычно выделяют:

● метаданные – данные, описывающие структуру и характеристики данных;

● справочные данные – данные из справочников, международных, общероссийских и отраслевых классификаторов и т. п.;

● основные данные – структурированные данные об объектах учета;

● транзакционные данные – сведения, отражающие результат изменения данных, относящиеся к фиксированному моменту времени, не изменяющиеся в будущем;

● данные контроля и аудита – сведения, фиксируемые в различных журналах регистрации[325],[326],[327].

Часто в отдельную категорию относят аналитические данные – эти данные фактически образуются из основных, справочных и транзакционных данных. Они используются в аналитической деятельности организации (рис. 8.2).

На рисунке 8.2 отражены взаимоотношения перечисленных категорий данных в процессе деятельности организации.

* Van Gils B. Data Management: a Gentle Introduction: Balancing Theory and Practice. Van Haren Publishing, 2020.

На рисунке 8.3 отражены роли, которые играет каждая из категорий данных в информационном обеспечении процессов организации. Следует обратить внимание на фундаментальную роль справочных и основных данных и на важность поддержания высокого уровня их качества. Например, при наличии ошибок в данных о номере товара или типе клиента цена заказа на доставку может быть определена некорректно (см. связи, отраженные пунктирными стрелками), что может привести к серьезным финансовым последствиям.

* McGilvray D. Executing Data Quality Projects: Ten Steps to Quality Data and Trusted Information (TM). Morgan Kaufmann, 2008.

* Deng Z. MIS2502: Data Analytics: Semi-structured Data Analytics. Fox School of Business. Temple University, 2019. – URL: https://slidetodoc.com/mis-2502-data-analytics-semistructured-data-analytics-zhe/.

По степени структурированности можно выделить:

● структурированные данные – данные, имеющие строго фиксированную структуру, определяемую формальной моделью данных (например, реляционной схемой[328]);

● полуструктурированные данные – данные, не имеющие строго определенной структуры, но предполагающие наличие установленных правил, позволяющих выделять семантические элементы при их интерпретации (прежде всего, правил расстановки тегов и других маркеров, отмечающих и выделяющих элементы данных);

● неструктурированные данные – данные, произвольные по форме, не имеющие строго определенной структуры и не организованные по определенным правилам.

Схемы, представленные на рисунках 8.2 и 8.3, в основном отражают взаимосвязи между структурированными данными. Однако в деятельности предприятий и учреждений не менее важны данные полуструктурированные и неструктурированные (в частности, к ним относятся отмеченные выше данные контроля и аудита). Они могут быть самыми разнообразными по назначению и области применения. C каждым годом роль этих данных становится все более заметной и существенной.

На рисунке 8.4 приведены примеры форматов хранения и передачи данных по каждой из перечисленных категорий.

* Smith P., Edge J., Parry S., Wilkinson D. Crossing the Data Delta: Turn the data you have into the information you need. Entity Group Limited, 2016.

С точки зрения управления данными полезно представить их в виде диаграммы (рис. 8.5), укрупненно отражающей соотношения между основными категориями[329].

Данные, относящиеся к категориям, расположенным сверху, как правило, являются базовыми для формирования данных, относящихся к категориям, расположенным ниже (данные верхних категорий участвуют в формировании данных нижних категорий). Поэтому по мере продвижения вверх по списку категорий требования к качеству соответствующих данных возрастают.

Также по мере продвижения вверх по списку категорий увеличивается продолжительность жизненного цикла данных. При этом при продвижении вниз по списку категорий увеличивается объем самих данных, а также частота их изменений.

Перейти на страницу:

Похожие книги

100 абсолютных законов успеха в бизнесе
100 абсолютных законов успеха в бизнесе

Почему одни люди преуспевают в бизнесе больше других? Почему одни предприятия процветают, в то время как другие терпят крах? Известный лектор и писатель по вопросам бизнеса нашел ответы на эти очень трудные вопросы. В своей книге он представляет набор принципов, или `универсальных законов`, которые лежат в основе успеха деловых людей всего мира. Практические рекомендации Трейси имеют вид 100 доступных для понимания и простых в применении законов, относящихся к важнейшим сферам труда и бизнеса. Он также приводит примеры из реальной жизни, которые наглядно иллюстрируют, как работает каждый из законов, а также предлагает читателю упражнения по применению этих законов в работе и жизни.

Брайан Трейси

Деловая литература / Маркетинг, PR, реклама / О бизнесе популярно / Финансы и бизнес