• Ladley J., McGilvray D., O’Neal K., Price J., Redman T. The Leader’s Data Manifesto. dataleaders.org, 2019. – URL: https://dataleaders.org/.
• Legner C., Pentek T., Otto B. Accumulating Design Knowledge with Reference Models: Insights from 12 Years’ Research into Data Management // Journal of the Association for Information Systems, 2020, 21(3): 735–770. DOI: 10.17705/1jais.00618 – URL: https://www.researchgate.net/publication/341684789_Accumulating_Design_Knowledge_with_Reference_Models_Insights_from_12_Years%27_Research_into_Data_Management.
• The Hawley Committee. Information as an Asset: The Board Agenda. London: KPMG, 1995. – URL: https://www.cilip.org.uk/page/informationasset.
• Vista Projects. Data-centric Architecture – A Different Way of Thinking. Vista Projects Ltd., 2021. – URL: https://www.vistaprojects.com/blog/data-centric-architecture/.
Часть 2. Данные: Извлечение ценности
Глава 8. Данные как объект управления
8.1. Источники данных и виды информационных активов
Организации, которые не знают, какими данными они располагают, не могут использовать их в качестве актива. В книге Дагласа Лейни «Инфономика: информация как актив: монетизация, оценка, управление» приводится справедливое высказывание директора по информационным технологиям крупной страховой компании: «Глупо, что у кого-то в компании есть опись нашей офисной мебели, но ни у кого нет описи того, какими данными мы располагаем»[322].
При инвентаризации информационных активов целесообразно в первую очередь разделить их на группы в зависимости от источников поступления данных. Лейни выделяет пять основных групп (рис. 8.1).
Операционные данные
Это данные о клиентах, поставщиках, партнерах и сотрудниках, доступные в процессе онлайн-обработки транзакций и (или) полученные из онлайн базы данных аналитической обработки. Часто такие сведения успешно собираются с помощью датчиков в ходе мониторинга процессов предприятий. Например, кассовые аппараты, подключенные к банковской системе, интеллектуальные счетчики, голосовая связь, радиочастотная идентификация и т. д.
«Темные (dark) данные»
Информация, которая не хранится или не собирается организациями специально, а формируется случайно в процессе ведения бизнеса или взаимодействия с сетевыми сервисами и остается в интернет-архивах. Такие данные являются общедоступными и частично структурированными для анализа, включают электронные письма, электронные договоры, документы, мультимедиа, системные журналы и т. д.
* Laney D. B. Infonomics: How to Monetize, Manage, and Measure Information as an Asset for Competitive Advantage; Routledge; 1st edition, 2017. (Русский перевод: Даглас Лейни. Инфономика: информация как актив: монетизация, оценка, управление. – М.: Точка, 2020. – [Библиотека «Айтеко»].)
Публичные данные
Информация, распространяемая государственными органами (заявления, пресс-релизы, прогноз погоды, сведения о планах муниципального развития; открытые публичные реестры, опубликованные нормативные акты, включая их проекты), одна из наиболее достоверных и чаще всего структурированная. Ценность таких данных раскрывается в совокупности с другими источниками сведений, поскольку позволяет определить направления развития бизнеса или целой индустрии в рамках отдельного города, страны или на международном уровне.
Коммерческие данные
Уже давно в разных отраслях промышленности существуют агрегаторы коммерчески ценной информации. Указанные агрегаторы предоставляют полный доступ к собственным каталогам информации по подписке. Но с учетом перенаправления современных рыночных отношений в сторону открытия информации для потенциальных инвесторов и клиентов многие сведения, представляющие коммерческий интерес, открыто размещаются в цифровой среде. Распространенной стала практика размещения информации об активах на открытых площадках, в особенности если речь идет о принадлежащих компаниям объектах интеллектуальной собственности.
Данные социальных медиа
Вовлеченность бизнеса и частных лиц в функционал крупных социальных сетей создала еще один источник данных о спросе, тенденциях в определенных сегментах рыночных отношений, новых и перспективных продуктах, услугах и компаниях. Сообщения, комментарии, репосты активно используют для выявления и прогнозирования целевых клиентов, коммерческих возможностей, конкурентных отношений, бизнес-рисков и потенциальных партнеров.
Открытые данные