Подтверждение и документирование понимания различных аспектов организации данных и перспектив в рамках моделирования данных способствует более эффективной деятельности по следующим направлениям.
* Smith P., Edge J., Parry S., Wilkinson D. Crossing the Data Delta: Turn the data you have into the information you need. Entity Group Limited, 2016.
● Формализация. Модель данных документирует краткое и четкое определение структур данных и связей между ними. Она позволяет оценивать, как влияют на данные реализованные бизнес-правила (как для текущих, так и для будущих целевых состояний). Формальное определение вводит строго соблюдаемую структуру данных, что снижает вероятность нарушений при обеспечении доступа к данным и их ведении. Иллюстрируя структуры данных и связи между их элементами, модель данных упрощает их практическое использование.
● Определение области применения. Модель данных помогает объяснить границы контекста данных, внедрения приобретенного программного обеспечения и области охвата проектов, инициатив и существующих систем.
● Сохранение/документирование знаний. Модель данных может сохранять корпоративную память о какой-либо системе или проекте, фиксируя знания в четко определенной форме. Она служит документацией для будущих проектов в качестве версии «как есть».
Модели данных помогают лучше понимать различные аспекты организации или бизнеса, механизмы работы приложений или последствия изменений существующей структуры данных. Таким образом, модель данных становится многократно используемой картой, помогающей профессионалам в области бизнеса, руководителям проектов, аналитикам, специалистам по моделированию и разработчикам лучше понимать структуру данных в контексте среды окружения. Так же как картографы изучают и документируют географический ландшафт, помогая другим осуществлять навигацию, специалисты по моделированию данных помогают другим понять информационный ландшафт[407].
С этого блока нашего сквозного примера мы начинаем обсуждение реализации программы управления данными компании «Телеком Дубль».
В рамках мероприятий по планированию и проектированию данных в компании началась работа по созданию корпоративной модели данных и описанию потоков данных. Также в подразделениях началось обсуждение основных цепочек ценности данных.
Специалисты «Телеком Дубль» приступили к переходу на дата-центричную архитектуру, о которой мы говорили в главе 6 (см. рис. 6.2). Далее, в главе 13 мы рассмотрим основные домены (предметные области) телекоммуникационной компании (см. раздел 13.8). По каждому из этих доменов, и в первую очередь по клиентскому, разрабатываются модели данных, ориентированные на использование всеми системами.
При внедрении новых приложений компания не расширяет ИТ-ландшафт для дополнения сведений о клиенте новыми данными во всех смежных системах (CDI, CRM, ERP), а централизованно обновляет модель данных клиентского домена, что позволяет бесшовно для систем-потребителей получать новую информацию о клиентах.
Литература к главе 11
• Aiken P., Harbour T. Data Strategy and the Enterprise Data Executive: Ensuring that Business and IT are in Synch in the Post-Big Data Era. Technics Publication, 2017.
• Bernard S. An Introduction to Holistic Enterprise Architecture: Fourth Edition. AuthorHouse, 2020.
• Fox R. Controlling the Chaos: A Functional Framework for Enterprise Architecture and Governance; First Edition. Technics Publications, 2018.
• Hoberman S. Data Modeling Made Simple: A Practical Guide for Business and IT Professionals. Second Edition. Technics Publications, 2009.
• Smith P., Edge J., Parry S., Wilkinson D. Crossing the Data Delta: Turn the data you have into the information you need. Entity Group Limited, 2016.
• Strengholt P. Data Management at Scale: Best Practices for Enterprise Architecture; 1st Edition. O’Reilly Media, Inc., 2010.