Согласно Харди, другое неотъемлемое свойство, наделяющее математическую идею эстетической ценностью, — это глубина. «Второе свойство, которое я потребовал от значительной идеи, — ее глубина. Определить его еще труднее. Оно каким-то образом связано с трудностью; "более глубокие" идеи обычно труднее постичь, но вместе с тем это не одно и то же. Создается впечатление, что математические идеи "стратифицированы", то есть расположены как бы слоями, идеи в каждом слое связаны целым комплексом отношений между собой и с идеями, лежащими в верхних и нижних слоях. Чем ниже слой, тем глубже (и, как правило, труднее) идея».
* * *
Эйлер уточнил свою исходную идею следующим образом. Вернемся к произведению
(1 — az2)·(1 — bz2)·(1 — cz2)·… = 1 — Az2 + Bz4 - Cz6 +…
Теперь рассмотрим число 8, на которое умножается z4. Нетрудно видеть, что это число В образуется попарным умножением с последующим сложением чисел а, Ь, с которые умножаются на z2 в левой части равенства: B = ab + ac + bc + …
Таким образом, если мы запишем Р = а + Ь + с +… и Q = а2 + Ь2 + с2 + …. путем простых подсчетов имеем: Р = A и Q = A·P — 2·B.
Если мы вновь рассмотрим два разложения для функции синуса:
и примем во внимание, что в этом случае А = 1/6, B = 1/120 и, как мы уже вычислили, Р = π2/6, получим значение суммы чисел, обратных четвертым степеням натуральных чисел: 1 + 1/24 + 1/34 + 1/44 + … = π4/90.
Нечто подобное можно выполнить для z6 и последующих степеней. Благодаря этому Эйлер вычислил суммы чисел, обратных четным степеням натуральных чисел, начиная от второй и заканчивая двадцать шестой. Несколько лет спустя Эйлер обнаружил общую формулу суммы чисел, обратных произвольной четной степени натуральных чисел. О сумме чисел, обратных нечетным степеням натуральных чисел, ничего не известно и поныне. Мы знаем лишь, что первые несколько подобных сумм являются иррациональными числами.
* * *
И вновь суммы Эйлера помогут нам понять, что Харди имел в виду, когда говорил о «глубине» математических идей. Эйлер связал математические понятия из разных областей. В методе Эйлера скрывается понятие бесконечности, принадлежащее, можно сказать, к метафизике. Этот метод относится и к арифметике, так как в его задаче рассматриваются натуральные числа — требуется сложить квадраты чисел, обратных им. При вычислении суммы на сцену выходит геометрия, так как значение суммы выражается с помощью квадрата числа
К общности и глубине Харди добавил еще три свойства, способные наделить математическую идею эстетической ценностью. Это не свойства идеи как таковые, а, скорее, характеристики, показывающие способность идеи вызвать определенную эстетическую реакцию. Харди назвал эти свойства неожиданностью, непреложностью и экономичностью. Он описал их так: «Доказательства необычны и удивительны по форме; используемые инструменты кажутся по-детски простыми по сравнению с далеко идущими результатами, но все заключения непреложно вытекают из теоремы».
Нетрудно видеть, что суммы Эйлера обладают всеми этими характеристиками.