Далее Эйлер ввел в игру функцию синуса. Синус и косинус — две основные тригонометрические функции. Они определяются очень просто. Изобразим угол
Эйлер последовательно рассмотрел два разложения функции синуса в ряд. Один из этих бесконечных рядов открыл сам Эйлер:
где знаменатели дробей — квадраты натуральных чисел, умноженные на квадрат числа 71. Второе разложение синуса в бесконечный ряд открыл Ньютон:
Здесь знаменатели представляют собой факториалы последовательных чисел. Напомним, что факториал произвольного числа
Иными словами, если показатель степени
Так как оба этих ряда представляют собой разложение одной и той же функции синуса, они должны быть равны, в частности:
Согласно изложенному в предыдущем абзаце, получим:
или, что аналогично:
Таким образом, суммой чисел, обратных квадратам натуральных чисел, будет квадрат числа
Размышления
Теперь вернемся к рассуждениям Харди о двух основных свойствах, которые наделяют математическую идею эстетической ценностью. Харди писал: «Два качества играют существенную роль: общность и глубина идеи, но ни одно из них не поддается определению легко и просто».
Говоря об общности математической идеи, Харди уточнял: «Значительная математическая идея, серьезная математическая теорема должна обладать "общностью" в каком-то следующем смысле. Идея должна быть составляющей частью многих математических конструкций, используемых в доказательствах многих теорем различного рода. Теорема должна быть такой, что даже если первоначально она сформулирована в весьма частном виде (как теорема Пифагора), она должна допускать существенное обобщение и быть типичной для целого класса теорем аналогичного рода. Отношения, выявляемые в ходе ее доказательства, должны связывать многие различные математические идеи». Чтобы у читателя не осталось никаких сомнений относительно того, насколько сложно точно определить «общность», Харди писал: «Всё это очень смутно и требует многочисленных уточнений».
Рассмотрим пример, приведенный Эйлером: обладает ли ряд Эйлера общностью в том смысле, в каком трактовал это свойство Харди? Да, этот ряд действительно обладает общностью, причем в нескольких значениях.
Основная идея Эйлера заключалась в том, чтобы использовать для вычисления некоторых бесконечных сумм два представления одной и той же функции: одно в виде произведения, другое — в форме ряда. В представленном выше случае Эйлер с помощью функции синуса нашел сумму чисел, обратных квадратам натуральных чисел. Применив другие функции, Эйлер во «Введении в анализ бесконечно малых» с помощью аналогичного метода вычислил множество сумм бесконечных рядов, в частности:
В этой сумме с противоположными знаками записаны числа, обратные кубам нечетных чисел, за исключением кратных 3.
Однако общность идеи Эйлера не ограничивается одной лишь заменой функции синуса на другие. В его методе рассматривается выражение
Число, на которое последовательно умножается z2, связывается с суммой чисел, на которые умножается z2 в левой части равенства. В слегка видоизмененном виде идея Эйлера становится еще более плодотворной. Достаточно обратить внимание на числа, которые умножаются на остальные степени переменной в правой части равенства и выразить их через коэффициенты при z2 в левой части равенства (см. врезку на следующей странице). Применив эту идею, Эйлер вычислил не только сумму чисел, обратных квадратам натуральных чисел, но и чисел, обратных четвертым, шестым и восьмым степеням:
Ему удалось дойти до 26-й степени:
Надеемся, что читатель смог оценить всю общность рассуждений Эйлера и, как следствие, лучше понять, что хотел сказать Харди, когда писал об общности математической идеи: именно общностью, помимо гениальности, отличается рассмотренная идея Эйлера.