Многие страны принимают законы против дискриминации или несправедливого обращения с конкретными группами населения, как в случае со страхованием, который мы рассматривали в начале этой главы. Например, в Великобритании Закон о равенстве, принятый в 2010 г., призван «предусмотреть требования к министрам Короны и другим лицам, принимающим стратегические решения, чтобы они при выполнении своих функций уделяли внимание сокращению социально-экономического неравенства; противодействовали виктимизации в конкретных обстоятельствах; требовали выполнения определенных должностных обязанностей в рамках борьбы с дискриминацией и иными запрещенными формами поведения; способствовали равенству возможностей…».
В законе дается определение прямой дискриминации: «Один человек (A) дискриминирует другого человека (B), если A в силу наличия у В защищаемого законом признака относится к B менее благосклонно, чем он относится или относился бы к другим людям». Далее закон описывает особенности ряда признаков, запрещая относиться к конкретному человеку менее благосклонно на основании его групповой классификации, – например, потому что он мужчина или принадлежит к определенной расе. Затем в законе дается определение косвенной дискриминации, которая имеет место, «если А применяет к В правила, критерии или процедуры, являющиеся дискриминационными по отношению к защищаемому законом признаку, присущему В».
В Соединенных Штатах действует аналогичный закон, в котором термин «неравноправие» означает, что кого-то преднамеренно ущемляют в правах на основании имеющегося у него признака из числа приведенных в законе. В то же время понятие «неравное воздействие» подразумевает внешне одинаковое отношение к группам носителей признаков, но при этом разное влияние, оказываемое на разные группы.
Дискриминационные признаки могут различаться в разных странах, но незначительно и обычно включают в себя возраст, трансгендерность, гражданский брак, беременность, нахождение в декретном отпуске, инвалидность, изменение пола, расу (включая цвет кожи, национальность, этническое происхождение), религию, убеждения или их отсутствие, пол и сексуальную ориентацию. По сути, закон говорит о том, что защищаемые им признаки должны рассматриваться как темные данные и не влиять на принимаемые решения. Давайте разберем несколько примеров того, как именно этот закон проявляет себя в разных областях.
Мы уже видели, что кредитные скоринги в банках строятся на основе статистических моделей, которые показывают вероятность дефолта потенциального заемщика. Эти модели используют исторические данные, описывающие выборки клиентов и истории их платежей. Можно ожидать, что люди, имеющие признаки, присущие проблемным клиентам, тоже представляют для банка повышенный риск. Очевидно, что, создавая кредитные скоринги, банки хотят видеть их максимально точными и быть уверенными в том, что если система оценивает, например, 10 % заявителей как потенциальных неплательщиков, то их фактическое число уйдет недалеко от этих 10 %. В противном случае последствия для коммерческой деятельности могут быть катастрофическими.
Чтобы сделать систему максимально точной, разумно использовать всю доступную информацию и не игнорировать какую-то ее часть, которая могла бы быть полезной. Здесь, как вы уже догадались, и кроется проблема. Для повышения точности прогноза нужно включить в расчет дискриминационные признаки, но по веским причинам закон запрещает нам это делать – он четко говорит, что включать эти признаки в процесс принятия решений нельзя.
Очевидно, должны быть какие-то способы обойти это ограничение. Казалось бы, если мы не можем включить возраст в число показателей для оценки, то что мешает нам взять другой, коррелирующий с ним показатель? Однако законодатели тоже увидели эту лазейку. В отчете конгресса США по кредитному скорингу сказано: «Результаты, полученные с помощью модели, созданной специально для этого исследования, позволяют предположить, что некоторые кредитные характеристики работают в том числе как возрастной ограничитель». Также в отчете делается акцент на то, что «в результате ограниченного числа доверенных лиц у пожилых людей их кредитные баллы несколько ниже, чем у тех, кто моложе, и чем было бы, не указывай эти кредитные характеристики на возраст»[77].
Чтобы предотвратить скрытое использование защищенных законом признаков, регуляторы могли бы просто запретить переменные, которые коррелируют с ними. Однако на пути у этого решения стоят две проблемы.
Во-первых, как отмечается в отчете конгресса, «анализ показывает, что смягчение воздействия путем исключения этих кредитных характеристик [коррелированных с возрастом] из модели обойдется слишком дорого, поскольку кроме функции возрастного ограничителя они играют важную прогностическую роль». Это означает, что удаление обсуждаемых признаков из системы показателей означает принесение в жертву и абсолютно законной полезной информации.