Читаем Разберись в Data Science полностью

Ложноположительное заключение возникает тогда, когда доказательства подтверждают альтернативную гипотезу, которую следовало бы отвергнуть (например, у мужчины оказывается положительный тест на беременность). С другой стороны, ложноотрицательное заключение имеет место тогда, когда вы принимаете ложную нулевую гипотезу (например, у беременной женщины оказывается отрицательный тест на беременность). В табл. 7.2 приведены дополнительные примеры ошибок первого и второго родов.

Вы как лицо, принимающее решения, выбираете вероятность ложноположительного заключения, устанавливая уровень значимости. Со статистической значимостью тесно связано такое понятие, как мощность – вероятность отклонения нулевой гипотезы, когда альтернативная гипотеза верна. Чем выше мощность теста, тем ниже вероятность ложноотрицательного заключения.

Табл. 7.2. Ложноположительные и ложноотрицательные заключения при принятии решения

Балансирование ошибок первого и второго родов предполагает компромисс, и, если вы не соберете больше данных, то не сможете уменьшить вероятность одного, не увеличив вероятность другого. Например, вы хотите обеспечить низкий уровень ложноположительных заключений в случае спама. Нулевая гипотеза заключается в том, что «электронное письмо не является спамом». В связи с этим ложноположительное заключение может привести к тому, что электронное письмо от вашей матери окажется в папке со спамом. Обратная сторона этого – большее количество спама в вашем почтовом ящике (больше ложноотрицательных заключений), но вы готовы мириться с этим ради того, чтобы получать большую часть своей личной электронной почты. Однако в случае скрининга заболеваний медицинское сообщество может допустить больше ложноположительных заключений, чтобы уменьшить количество ложноотрицательных (пропущенный диагноз). Если у кого-то есть заболевание, медики хотят его обнаружить.

Мораль: вариации усложняют процесс принятия решений. Иногда вам будет казаться, что ваша альтернативная гипотеза верна, хотя это не так (ложноположительное заключение), а иногда будете ошибочно думать, что верна нулевая гипотеза (ложноотрицательное заключение).

<p>Процесс построения статистического вывода</p>

В предыдущих пяти кратких уроках мы рассмотрели несколько компонентов процесса статистического вывода. Пришло время понять, как эти компоненты сочетаются друг с другом. Давайте попробуем обобщить их, чтобы вы как главный по данным могли понять и четко объяснить весь процесс построения статистического вывода.

Если вкратце, то в ходе этого процесса вы должны выполнить следующие действия:

1. Задайте осмысленный вопрос.

2. Сформулируйте гипотезы для проверки, используя статус-кво в качестве нулевой гипотезы, а свое предположение – в качестве альтернативной.

3. Задайте уровень значимости. (Чаще всего используется произвольное значение в 5 % или 0,05.)

4. Вычислите p-значение на основе результата статистического теста.

5. Вычислите соответствующие доверительные интервалы.

6. Отклоните нулевую гипотезу в пользу альтернативной, если p-значение оказалось меньше уровня значимости; в противном случае не отклоняйте нулевую гипотезу.

Остановитесь на мгновение и подумайте о перечисленных выше шагах. Если вы можете прочитать и понять все шесть шагов – поздравляем! Вы делаете успехи в изучении языка статистики. Единственное, что мы до этого упускали из виду, – это идея статистического теста, механизма вычисления p-значения. Мы использовали его при определении базовой вероятности в примере со стажером-баскетболистом (возведя 50 % в 10-ю степень). Однако существуют сотни статистических тестов, используемых для описания, сравнения, оценки рисков и взаимосвязей в данных. Именно этим инструментам уделяется основное внимание в учебниках по статистике. Мы не стали сосредоточиваться на статистических тестах здесь, поскольку вы можете и должны понимать логику, лежащую в основе статистики, независимо от метода расчета p-значения.

Возвращаясь к поставленной задаче, мы признаем, что главные по данным чаще всего будут потребителями статистических результатов, а не их создателями. Поэтому в следующем разделе мы перечислим вопросы, которые вам следует задать, чтобы бросить вызов тем статистическим показателям, с которыми вы сталкиваетесь. Если вы хорошо усвоили материал, изложенный в предыдущих разделах, вы уже должны быть готовы задавать эти вопросы.

<p>Вопросы, позволяющие бросить вызов статистическим показателям</p>

Мы составили список вопросов, которые вы можете задать своим товарищам по команде с целью критической оценки представленных статистических показателей:

– Каков контекст этой статистики?

– Каков размер выборки?

– Что вы тестируете?

– Какова нулевая гипотеза?

– Каков уровень значимости?

– Сколько тестов вы проводите?

– Каковы доверительные интервалы?

– Имеет ли это практическое значение?

– Предполагаете ли вы наличие причинно-следственной связи?

Давайте рассмотрим каждый из этих вопросов и разберемся в том, почему они важны.

Перейти на страницу:

Все книги серии Мировой компьютерный бестселлер

Похожие книги

1С: Бухгалтерия 8 с нуля
1С: Бухгалтерия 8 с нуля

Книга содержит полное описание приемов и методов работы с программой 1С:Бухгалтерия 8. Рассматривается автоматизация всех основных участков бухгалтерии: учет наличных и безналичных денежных средств, основных средств и НМА, прихода и расхода товарно-материальных ценностей, зарплаты, производства. Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, проводить их по учету, формировать разнообразные отчеты, выводить данные на печать, настраивать программу и использовать ее сервисные функции. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов.Для широкого круга пользователей.

Алексей Анатольевич Гладкий

Программирование, программы, базы данных / Программное обеспечение / Бухучет и аудит / Финансы и бизнес / Книги по IT / Словари и Энциклопедии
1С: Управление торговлей 8.2
1С: Управление торговлей 8.2

Современные торговые предприятия предлагают своим клиентам широчайший ассортимент товаров, который исчисляется тысячами и десятками тысяч наименований. Причем многие позиции могут реализовываться на разных условиях: предоплата, отсрочка платежи, скидка, наценка, объем партии, и т.д. Клиенты зачастую делятся на категории – VIP-клиент, обычный клиент, постоянный клиент, мелкооптовый клиент, и т.д. Товарные позиции могут комплектоваться и разукомплектовываться, многие товары подлежат обязательной сертификации и гигиеническим исследованиям, некондиционные позиции необходимо списывать, на складах периодически должна проводиться инвентаризация, каждая компания должна иметь свою маркетинговую политику и т.д., вообщем – современное торговое предприятие представляет живой организм, находящийся в постоянном движении.Очевидно, что вся эта кипучая деятельность требует автоматизации. Для решения этой задачи существуют специальные программные средства, и в этой книге мы познакомим вам с самым популярным продуктом, предназначенным для автоматизации деятельности торгового предприятия – «1С Управление торговлей», которое реализовано на новейшей технологической платформе версии 1С 8.2.

Алексей Анатольевич Гладкий

Финансы / Программирование, программы, базы данных

Все жанры