Мораль: проверка гипотезы – отличительная черта научных экспериментов. Чтобы бросить вызов статус-кво, допустите его истинность в рамках нулевой гипотезы. При наличии достаточного количества доказательств (данных), говорящих о том, что нулевая гипотеза маловероятна, отклоните ее в пользу нового знания, содержащегося в альтернативной гипотезе.
Предположим, вы играете в баскетбол с коллегами, и стажер просится в вашу команду, заявляя о том, что он попадает минимум в 50 % случаев. «Потрясающе», – думаете вы. Вашей команде нужен хороший бомбардир[60].
Перед игрой вы мысленно отмечаете (то есть формулируете нулевую гипотезу): процент реализации бросков стажера ≥ 50 %.
Игра начинается, и вы передаете ему мяч для выполнения открытого броска. Промах. «Ничего страшного», – думаете вы. Но затем он не попадает снова. Потом промахивается еще раз. И… еще. Четыре промаха подряд. Ну и ну. Это просто ужасно.
Ваша вера в него начинает колебаться. Этот парень действительно умеет играть или просто дурачится? Тем не менее даже у профессионалов бывают неудачные дни, и иногда они промахиваются четыре раза подряд. И вы продолжаете давать ему новые шансы. А он продолжает промахиваться. За всю игру стажер промахнулся 10 раз подряд, и ваша команда проиграла. Вы разочарованы и считаете этого парня лжецом.
Вы возвращаетесь за свой стол и решаете количественно оценить то жалкое выступление, свидетелем которого вы только что стали.
Итак, какова вероятность того, что игрок, реализующий 50 % своих бросков, промахнется 10 раз подряд?
Отталкиваясь от базовой вероятности, вы выполняете некоторые расчеты. Вероятность того, что он промахнется один раз, составляет 50 %. Вероятность двух промахов подряд составляет 50 % × 50 % = 25 % (при условии, что результаты бросков не зависят друг от друга, как говорилось в предыдущей главе). Продолжая эту логику, вы умножаете показатель 50 % сам на себя 10 раз: 0,5^10 = 0,00098, то есть 0,1 %, или примерно 1 из 1000.
Таким образом, вероятность данного конкретного результата, то есть 10 промахов подряд, при условии, что стажер, по его словам, способен реализовать 50 % бросков, составляет 1 из 1000.
Эта вероятность, равная 1 из 1000 или 0,001, называется
Десять пропущенных бросков лишь подрывают доверие. Однако то, что вероятность неудачного дня составляет 1 из 1000, довольно убедительно доказывает то, что первоначальное утверждение стажера вряд ли было истинным. Скорее всего, вы отвергли нулевую гипотезу на более ранних этапах игры в пользу альтернативной гипотезы,
Остановитесь на мгновение и спросите себя: когда вы начали сомневаться в способностях стажера вместо того, чтобы оправдывать его? Каким было пороговое число промахов, заставившее вас отвергнуть нулевую гипотезу?
Для примера предположим, что это пороговое значение составляло 5 промахов. Если бы стажер промахнулся только 4 раза подряд, вероятность чего составляет 50 % × 50 % × 50 % × 50 %[61] = 6,25 %, или 1 из 16, вы бы еще могли продолжать верить в то, что он хороший бомбардир. Однако после пятого промаха доказательств обратного стало слишком много. Этот порог в 5 промахов подряд называется уровнем значимости, после превышения которого полученные данные больше не соответствуют исходному утверждению.
Поскольку Вселенная полна вариаций, вы должны смириться с некоторым уровнем случайности (и количеством промахов). Иногда человек может плохо играть без всяких причин. Таким образом, уровень значимости – это некий условный установленный вами предел, до которого вы можете мириться со случайностью и необъяснимыми вариациями, продолжая считать нулевую гипотезу верной. Если
Урок: проверка того, что
Когда вариация приводит к неправильному выводу, это называется ошибкой при принятии решения.
Существуют два типа подобных ошибок, названия которых мало о чем говорят: ошибка первого рода (ложноположительное заключение) и ошибка второго рода (ложноотрицательное заключение). Поскольку описательность названия имеет большое значение, мы предпочитаем называть ошибки первого и второго рода именно ложноположительными и ложноотрицательными заключениями.