С практической точки зрения понижение уровня значимости, скажем, с 5 до 1 % сокращает количество ложноположительных заключений. Это задает более высокую планку для отклонения нулевой гипотезы. В этом случае данные должны быть более экстремальными (или, по крайней мере, убедительными), чтобы вы отвергли нулевую гипотезу. Звучит не так уж и плохо, правда? Однако обратная сторона этого – увеличение числа ложноотрицательных заключений. Достичь компромисса в данном случае непросто, и какой-то универсальной рекомендации дать нельзя. Достижение правильного баланса зависит от конкретной проблемы и вашей способности справляться с последствиями ошибок, связанных с ложноотрицательными и ложноположительными заключениями.
После выяснения уровня значимости спросите своих специалистов по работе с данными, сколько тестов они проводят. Поскольку они смотрят на данные по-разному, они могут провести десятки, а то и сотни неформальных статистических тестов с уровнем значимости в 5 %. Например, предположим, что исследователь тестирует большой набор данных о больных раком и типах пищевых продуктов, которые они едят, пытаясь выявить те продукты, которые могут быть связаны с более высокими показателями выживаемости. При наличии в базе данных 100 различных видов продуктов питания и использовании уровня значимости в 5 %, 5 продуктов покажутся статистически значимыми в борьбе с раком, даже если ни один из них не оказывает реального эффекта[67].
Ранее мы уже немного поговорили о доверительных интервалах и некоторых их компонентах. Пришло время собрать все фрагменты вместе.
Что мы подразумеваем под словом «доверие»? Как и в случае с понятием «значимость», смысл этого слова в статистике несколько отличается от повседневного. В статистике значимость и доверие неразрывно связаны. На самом деле между уровнем значимости и уровнем доверия существует симметрия – уровень значимости в 5 % соответствует уровню доверия в 95 %. Если более формально, то уровень доверия = 1 – уровень значимости. Поэтому вместо фразы «Мы отвергли нулевую гипотезу на уровне значимости 5 %» вы можете услышать фразу: «Мы отвергли нулевую гипотезу на уровне доверия 95 %».
Теперь давайте разберемся, почему человеку, анализирующему статистические результаты, следует запрашивать доверительные интервалы. Как говорилось ранее, доверительный интервал должен содержат истинное значение интересующего вас параметра популяции. В примере с опросом, который рассматривался ранее в главе, 95 % доверительный интервал при размере выборки N = 1000 составлял (62,5 %, 68,5 %). Предположим, что вместо 1000 студентов нам удалось опросить только 100, и 65 % из них сказали «да». В данном случае 95 % доверительный интервал составляет (54,8 %, 74,2 %). Данный интервал намного шире исходного из-за гораздо меньшего размера выборки. В связи с этим мы допускаем больший диапазон значений, которому, по нашему мнению, должна принадлежать интересующая нас доля популяции. Однако по мере увеличения размера выборки N доверительный интервал сокращается. Больше данных – больше доказательств и меньше неопределенности. Логично, не правда ли? Если вам удастся собрать данные обо всей популяции, то необходимость в доверительном интервале отпадет: вы найдете истинное значение интересующего вас параметра популяции.
Доверительные интервалы также позволяют оценить размер эффекта в статистическом тесте[68]. Предположим, вы хотите узнать, совпадает ли рост у баскетболисток из США и Европы. Первым делом вы формулируете нулевую и альтернативную гипотезы:
–
–
Теперь представьте, что ваш аналитик собирает данные и вычисляет
Однако не кажется ли вам, что вы что-то упускаете? Иногда мы рассматриваем статистическую значимость как некое подтверждение. О, ваши результаты статистически значимы? Это означает, что они на 100 % верны. Однако статистические тесты проводятся для обнаружения любой разницы, независимо от степени ее важности. Вот почему вам никогда не стоит довольствоваться
Имеет ли размер эффекта в полдюйма (1 см) практическое значение и представляет ли он вообще какой-либо интерес?