Чтобы умножить 4 на 16 (верхняя строка), мы сложим 2 и 4 (нижняя строка), получив число 6, которое соответствует числу 64. Аналогично мы можем выполнить операцию деления, но в этом случае результат получается путем вычитания соответствующих чисел в нижнем ряду. Например, чтобы разделить 256 на 8, мы просто вычтем 3 из 8, то есть 8–3 = 5, что соответствует 32, числу над числом 5.
Такое соотношение между числами в нижней и верхней строках является ключевым для логарифмов.
Теперь мы можем сформулировать строгое определение логарифма. Когда мы говорим о том, что число 32 соответствует числу 5, мы имеем в виду следующее равенство:
25 = 32.
Напомним, что 2 в степени 5 означает, что число 2 умножается само на себя пять раз. Мы можем читать строки второй таблицы следующим образом: «Число 3 является показателем степени, в которую надо возвести число 2, чтобы получить число 8» и «число 7 является показателем степени, в которую надо возвести число 2, чтобы получить число 128», что сокращенно записывается так:
log28 = 3;
log2128 = 7.
Эти выражения читаются соответственно так: «Логарифм числа 8 по основанию 2 равен 3» и «логарифм числа 128 по основанию 2 равен 7». Теперь рассмотрим пример из первой таблицы, 104 = 10000, то есть 4 является показателем степени, в которую надо возвести число 10, чтобы получить число 10000. Запишем это с использованием логарифма: log1010 000 = 4, что читается как «логарифм числа 10000 по основанию 10 равен 4».
Итак, обратимся к общему определению. Логарифмом числа
logab = с.
Непер был заинтересован в упрощении вычислений в сферической тригонометрии и впервые применил логарифмы для тригонометрических функций. Его подход не был похож на используемый сегодня, который можно назвать арифметическим.
Его метод был «кинематическим», то есть он рассматривал два отрезка, пробегаемых с разной скоростью. Слово «логарифм», впервые использованное самим Непером, означает «числа отношений» в смысле отношений между различными отрезками. (В нашем случае это отношение между числами из разных строк таблицы.) Непер работал с логарифмами по основанию 107, что было не особенно практично. Кроме того, ему не удалось установить, что логарифм числа 1 равен нулю, что равносильно соотношению 100 = 1.
Кроме того, как оказалось, вроде бы случайный подход при составлении логарифмических таблиц стал важной вехой в развитии математики. На задней обложке школьных учебников принято приводить таблицу умножения, аналогично и список простых чисел помещался в конце логарифмических таблиц. Тому была особая причина. Напомним, что любое число можно представить в виде произведения простых множителей, поэтому логично сначала вычислить логарифмы простых чисел, а затем считать логарифмы других чисел путем простого сложения результатов.
Логарифмические таблицы, которые Гаусс использовал в школе, содержали список первой тысячи простых чисел. Перед гением оказались два вроде бы не связанных между собой понятия, но их последующее сочетание привело к одной из самых интересных теорем алгебры.
* * *