Читаем Простые числа полностью

СТРАННЫЕ ДЕСЯТИЧНЫЕ ДРОБИ

Сегодня нам кажется совершенно нормальным возможность выразить дробь 19/8 в виде десятичной дроби 2,375 — мы просто делим 19 на 8. Но в XVI в. десятичные дроби были экзотикой. Фламандский инженер Симон Стевин (1548–1620) ввел обозначение десятичных дробей и предложил единицы веса и длины, основанные на десятичной записи, как и в метрической системе, используемой сегодня. Непер поддержал использование десятичных дробей и упрощенные обозначения Стевина, введя запятую (так называемую «десятичную точку») в качестве разделителя целой и дробной частей десятичной дроби. Запятая до сих пор используется во многих европейских странах. Однако в англоговорящих странах в качестве десятичного разделителя используется точка.

* * *

Непер также интересовался нумерологией и астрологией. Второе увлечение привело его к исследованию свойств геометрических фигур на сферической поверхности, и в результате он получил важные соотношения для сферических треугольников. Любой студент, изучавший сферическую тригонометрию, наверняка помнит формулы, носящие имя знаменитого шотландца.

Тем не менее для Непера один вопрос был намного важнее всех остальных. В те дни численные расчеты были очень утомительными. Непер подумал, что он мог бы использовать свое время более эффективно, чем просто заполнять страницу за страницей бесконечными расчетами, которые на самом деле были лишь рутинной работой.

Ему удалось изобрести устройство для быстрого умножения и деления, состоящее из стержней с квадратным сечением и доски для умножения. В 1617 г. Непер издал руководство под названием «Рабдология» (счет с помощью палочек), в котором он объяснил правила работы с этим устройством. Устройство Непера, предшественник логарифмической линейки, использовалось в Шотландии более 100 лет. (Непер позднее усовершенствовал этот инструмент, заменив стержни карточками, которые позволяли умножать большие числа. На самом деле эти карточки были прообразом знаменитых перфокарт, которые появились более чем четыре века спустя вместе с первыми компьютерами IBM.)

Однако важнейшим достижением Непера с точки зрения истории математики являются логарифмы — гениальный способ вычислений, который он опубликовал в 1614 г. под названием Mirifici Logarithmorum Canonis Descriptio («Описание удивительной таблицы логарифмов»). Чтобы оценить важную роль, которую логарифмы играют в теории простых чисел, мы сначала рассмотрим некоторые из их свойств.

Логарифмы

Логарифмы основаны на следующей идее. Мы знаем, что число 1000 = 10 х 10 х 10 может быть записано как десять в степени три, 103 Аналогично:

1 000 = 103;

10 0 00 = 104;

1 000 000 = 106.

Предположим, мы хотим перемножить эти числа:

1000 x 10000 x 1000000 = 10000000000000.

Но 10000000000000 = 1013.

Мы могли бы выполнить это умножение, сразу написав 103 + 4 + 6 = 1013. Совершенно очевидно, что проще складывать, чем умножать. Чтобы убедиться в этом, попробуйте умножить 1038 х 1052 = 1090, записав числа в развернутом виде!

Здесь и появляются логарифмы. Глядя на пример 1000 = 103, мы можем задать такой вопрос: «В какую степень надо возвести число 10, чтобы получить 1000?» Ответом будет 3. Запишем это следующим образом: log10  (1000) = 3. Тогда, например:

log10  100 = 2;

log10 1 000 = 3;

log10 1 000 000 = 6.

Главной идеей такого подхода является то, что числа гораздо проще складывать, чем умножать. Например:

log10 (100 x 1000) = log10100 + log101000 = 2 + 3 = 5.

Применяя обратную функцию, антилогарифм, мы получаем конечный результат:

105 = 100000.

Эти операции показаны в следующей в таблице:

Первая строка таблицы начинается с числа 1, и каждое следующее число в 10 раз больше предыдущего. Такой ряд чисел называется геометрической прогрессией со знаменателем 10. С другой стороны, числа в нижней строке таблицы получаются путем добавления единицы к предыдущему числу. Таким образом, верхняя строка содержит операции умножения, а нижняя строка — операции сложения. Как видно из таблицы, операция умножения

1000 x 100000 = 100000000

эквивалентна операции сложения

3 + 5 = 8.

Мы можем составить такую таблицу, используя любую геометрическую прогрессию в верхней строке, например:

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги