Эйлер догадался использовать мнимую переменную в так называемой экспоненциальной функции f (х) = 2х. Он был поражен, обнаружив, что график этой функции содержит волнообразные линии, которые встречаются при попытках изобразить музыкальные ноты. В зависимости от значений, принимаемых этими мнимыми числами, волны соответствовали более высоким или более низким нотам.
Несколько лет спустя французский математик
* * *
Эйлер попытался связать простые числа с функциями. Он знал, что по основной теореме арифметики любое натуральное число может быть единственным способом выражено в виде произведения простых чисел. Это означало, что знаменатель каждой из дробей в разложении дзета-функции может быть записан в виде произведения простых чисел. Например, запишем дзета-функцию для
и возьмем дробь 1/360. Разложим ее знаменатель, 360, на простые множители:
360 = 23 х З2 х 5, так что
Возведем обе части в квадрат:
Проделав это с каждым из знаменателей дзета-функции, Эйлер получил выражение
которое содержит только простые числа. В левой части этого выражения стоит бесконечная сумма, а в правой — произведение, также состоящее из бесконечного множества чисел. Это выражение, названное «эйлеровым произведением», является краеугольным камнем, на котором в последующие века строилось здание аналитической теории чисел. Оно стало отправной точкой, с которой Риман начал наводить порядок в хаотическом царстве простых чисел, о чем подробнее мы расскажем в шестой главе.
Прусский математик
4 = 2 + 2
6 = 3 + 3
8 = 3 + 5
10 = 3 + 7
12 = 5 + 7
14 = 3 +11.
16 декабря того же года Эйлер прислал ответ, где сообщал, что проверил гипотезу до числа 1000, а в другом письме от 3 апреля 1753 г. он написал, что проверил результат до числа 2500. В настоящее время с помощью компьютеров гипотеза проверена для всех четных чисел до двух триллионов. Однако в общем виде гипотеза еще не доказана. По мнению специалистов, она является одной из самых сложных проблем за всю историю математики.
* * *