Читаем Монизм как принцип диалектической логики полностью

Совершенно ясно, что должно быть найдено доказательство настоящей теоремы, а такое требование природе постулатов совершенно чуждо. Каким образом это предложение может быть доказано – это мы увидим ниже, придя к нему, когда элементы геометрии нас этому научат, ибо необходимо обнаружить его справедливость, но не как нечто, представляющееся нам очевидным без доказательства, а как предложение, становящееся таковым благодаря доказательству»[134].

Помимо доказательства Прокла, которое мы здесь приводить не будем, существовали и многие другие «доказательства» V постулата. Общей их чертой было то, что все они основывались на явном или неявном введении новой аксиомы, эквивалентной аксиоме о параллельных. Многим математикам, работавшим в этой области, уже казалось, что идеал геометрии, как строгой науки, достигнут, что удалось очистить Евклида «от всех пятен». (Итальянский геометр Саккери, которому принадлежат известные заслуги в деле подготовки неевклидовой геометрии, назвал свой труд: «Евклид, очищенный от всех пятен».)

«Доказательства постулата Евклида, – писал в 1763 г. немецкий математик и философ Ламберт, – могут быть доведены столь далеко, что остается, по-видимому, одна мелочь. Но при тщательном анализе оказывается, что в этой кажущейся мелочи и заключается вся суть вопроса; обыкновенно она содержит либо доказываемое предложение, либо равносильный ему постулат»[135].

Атмосфера, которая создалась вокруг вопроса о пятом постулате, хорошо выражена в письме венгерского математика Вольфганга Больяя своему сыну Иоганну, будущему создателю (независимо от Лобачевского, но несколько позднее его) неевклидовой геометрии: «Молю тебя, не делай только и ты попыток одолеть теорию о параллельных линиях; ты затратишь на нее все свое время, а предложения этого вы не докажете все вместе... Этот беспросветный мрак может потопить тысячи ньютоновских башен. Он никогда не прояснится на земле, и никогда несчастный род человеческий не будет владеть на земле чем-либо совершенным даже в геометрии. Это большая и вечная рана в моей душе»[136].

И тем не менее этот «беспросветный мрак» был очень скоро рассеян трудами Н.И. Лобачевского и Я. Больяя[137]. Lumen ex orient, свет, как говорится, пришел с востока.

«Напрасное старание со времен Евклида, – пишет Н.И. Лобачевский, – в продолжение двух тысяч лет заставило меня подозревать, что в самих понятиях еще не заключается той истины, которую хотели доказать и которую проверить, подобно другим физическим законам, могут лишь опыты»[138].

Лобачевский не только отказался от доказательства аксиомы о параллельных, но и построил геометрию, в аксиоматике которой содержится предложение, содержащее ее прямое отрицание: «Принимаем только то предложение справедливым, что перпендикуляр на линии параллельной встречает другую под острым углом»[139].

Это предложение эквивалентно следующим трем: 1) через точку, находящуюся вне прямой, можно провести не одну, а по крайней мере две прямых, параллельных данной; 2) параллельные прямые пересекаются в некоторой точке; 3) сумма углов прямоугольного треугольника не есть величина постоянная (т.е. не равна 2 d).

С точки зрения привычного (физического) пространственного опыта все эти предложения не только не представляются очевидными, но и прямо чудовищными. Тем не менее, основываясь на этой аксиоме, Лобачевский построил математически безупречную систему – неевклидову геометрию.

При допущении неевклидовой аксиомы (аксиомы Лобачевского, сводящейся к утверждению, что угол параллелизма острый, или аксиомы Римана: угол параллелизма тупой) геометрия может быть построена вполне логично и непротиворечиво. Все геометрические теоремы оказываются выполнимыми и связь математических понятий безупречной. Математически истинность неевклидовой геометрии тем самым оказывается вне всяких сомнений, тогда как ее истинность с точки зрения нашего обычного физического опыта представляется весьма и весьма проблематичной. Физический смысл неевклидовой геометрии выяснился значительно позднее, в связи с разработкой сначала специальной (1905 г.), а затем и общей теории относительности (1916 г.).

Допущение, что сумма углов прямолинейного треугольника есть величина постоянная, утверждал Н.И. Лобачевский, «не представляет необходимого следствия из наших понятий о пространстве». «Только опыт, – продолжает Лобачевский, – например, фактическое измерение трех углов прямолинейного треугольника, может подтвердить истинность этого допущения». Аналогично говорит и Риман: те особые свойства, которыми Евклидово пространство отличается от других мыслимых трехмерно протяженных многообразий, «могут быть заимствованы только из опыта».

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия