Величину напряженности магнитного поля, которая позволяет полностью «перемагнитить» ферромагнетик, называют коэрцитивной силой (лат.
Ранее было сказано, что магнитные свойства материалов зависят от присутствия в них доменов – крупных агрегатов магнитоактивных атомов или молекул. В 1990-х гг. произошло событие, заметно расширившее представления о возможностях магнитных материалов. Оказалось, что можно намагничивать отдельные молекулы в веществе при отсутствии доменной структуры. Появился новый класс магнетиков – мономолекулярные магниты (single-molecule magnets), которые способны сохранять намагниченность после удаления внешнего магнитного поля, то есть обладают магнитной «памятью». На данный момент такое явление наблюдают только при пониженных температурах, зачастую близких к абсолютному нулю. Как и у обычных магнитов, у мономолекулярных существует петля гистерезиса. На сегодня получено крупное семейство соединений, обладающих свойствами мономолекулярных магнитов, наиболее часто это различные комплексы лантаноидов. Величина коэрцитивной силы у некоторых из них достигает 50 эрстед. Молекулы-магниты в настоящее время интенсивно изучают: в перспективе они могут широко использоваться в качестве элементов высокоплотной магнитной памяти.
Экспериментально было установлено, что некоторые из каркасных металлорганосилоксанов способны намагничиваться и сохранять это состояние после удаления внешнего магнитного поля, что подтверждено полученными петлями гистерезиса (рис. 6.26). Наибольшую коэрцитивную силу – 350 Э (при температуре 1,8 К) – показало соединение, содержащее в каркасе пять атомов никеля.
Заманчивой выглядит идея сделать элементом магнитной памяти отдельную молекулу. Такие соединения открывают перспективы для создания вычислительных устройств следующего поколения – квантовых компьютеров.
Еще один «родственник» углерода
Речь пойдет о следующем элементе группы углерода после кремния – это германий. Сходства с углеродом у него практически нет, и правильнее было бы его назвать соперником кремния. Открытие германия было предсказано Д. И. Менделеевым (экасилиций) в 1871 г., а получен он был в 1886 г. К. Винклером, после чего между двумя учеными возникли дружеские отношения.
Наступил этап последовательного изучения германия, и были найдены его полезные свойства. Элементарный германий "развивался" по своим законам, открыв эпоху полупроводниковой электроники и продемонстрировав необычные оптические свойства (оптика для приборов ночного видения). В то же время изучение химических соединений этого элемента во многих случаях воспроизводило химию соединений кремния – ближайшего соседа и аналога по периодической системе, который был изучен более масштабно.
Германий стал более "управляемым", когда к нему применили опыт, накопленный при работе с кремнийорганическими соединениями. В химии германия появилась отдельная глава, когда исследователи перешли к соединениям, содержащим органическую группу у атома германия – то есть группировку С-Ge, а также поместили между атомами германия атомы кислорода. Соединения с фрагментами -RGe-O-GeR– называют органогермоксанами, по аналогии с органосилоксанами. Были получены различные германийсодержащие циклические соединения, напоминающие органосилоксановые структуры (рис. 6.27).
Вполне естественно было ожидать появления металлсодержащих гермоксанов (M-O-Ge), то есть класса соединений, родственного металлорганосилоксанам (M-O-Si). Сравнительно недавно он действительно (в 2016 г.) был создан в результате работы отечественного химика-элементоорганика А. Н. Биляченко (Институт элементоорганических соединений РАН и Российский университет дружбы народов), который уже имел большой опыт обращения с металлосилоксанами. Это подтверждает и показанная выше диаграмма (рис. 6.24): все структуры, кроме одной, получены А. Н. Биляченко.