Читаем Курс теоретической астрофизики полностью

Большие давления в фотосферах белых карликов отражаются на их спектрах. При больших давлениях высокие дискретные уровни атомов не осуществляются вследствие влияния электрических полей ионов и свободных электронов (подробнее об этом эффекте см. в § 8). Поэтому частота предела каждой серии уменьшается и ионизация с осуществляющихся нижних уровней может вызываться излучением меньших частот. Очевидно, что роль указанного эффекта различна в разных местах фотосферы (а именно, растёт с глубиной из-за увеличения давления). Вследствие этого при образовании спектра звезды должно происходить размывание скачков интенсивности у пределов серий. В частности, должен размываться и бальмеровский скачок, находящийся в видимой части спектра.

Рис. 9

На рис. 9 представлен теоретический спектр звезды с поверхностной температурой 12 000 K вблизи предела серии Бальмера. Из рисунка видно, как усиливается размывание скачка с увеличением ускорения силы тяжести в фотосфере. При больших значениях 𝑔 скачки практически отсутствуют. Наблюдаемые спектры белых карликов как раз и обладают такой особенностью.

7. Фотосферы при отсутствии ЛТР.

В изложенной выше теории фотосфер делалось допущение о локальном термодинамическом равновесии (ЛТР). Это допущение означает справедливость для каждого места фотосферы соотношения (6.22), выражающего закон Кирхгофа — Планка. В свою очередь указанное соотношение выполняется тогда, когда скорости свободных электронов распределены по формуле Максвелла, а распределение атомов по энергетическим уровням и стадиям ионизации даётся формулами Больцмана и Саха. Можно считать, что в глубоких слоях фотосферы состояние ЛТР осуществляется с большой точностью вследствие преобладающей роли столкновений в возбуждении и ионизации атомов. Однако по мере приближения к поверхности звезды роль столкновений убывает, вследствие чего возрастают отклонения от ЛТР. В самых же поверхностных слоях звезды возбуждение и ионизация атомов вызывается в основном не столкновениями, а излучением.

Таким образом, в строгой теории фотосфер определение поля излучения и населённостей энергетических уровней атомов должно производиться совместно. Точнее говоря, соотношение (6.22) надо заменить уравнениями, выражающими условие стационарности для каждого уровня. Условие состоит в том, что число переходов на данный уровень равно числу переходов с этого уровня (как при столкновениях, так и под воздействием излучения). Вместе с тем величины αν и εν, входящие в уравнение переноса излучения, должны быть выражены через населённости уровней. К указанным уравнениям следует также добавить уравнение механического равновесия и условие постоянства потока излучения в фотосфере.

Ясно, что в такой постановке теория фотосфер оказывается чрезвычайно сложной. Поэтому представляет большой интерес возможность упростить теорию, сделав предположение о детальном равновесии радиативных переходов в линиях (т.е. о равенстве между числом переходов с одного дискретного уровня на другой и числом обратных переходов). Тогда в основных уравнениях теории из всех радиативных переходов должны приниматься во внимание лишь переходы в непрерывном спектре (т.е. фотоионизации и рекомбинации). Такое предположение можно сделать потому, что непрозрачность в линиях значительно превосходит непрозрачность в непрерывном спектре.

Теория фотосфер при отсутствии ЛТР с указанным выше предположением разрабатывалась Калкофеном и другими авторами. Были рассчитаны модели фотосфер горячих звёзд, состоящих только из водорода или из водорода и гелия. Полученные результаты для видимой области спектра в общем не сильно отличаются от тех, к которым приводит теория при наличии ЛТР. Однако расхождение между результатами оказывается очень большим в области лаймановского континуума.

Теория фотосфер при отсутствии ЛТР подробно изложена в книге Д. Михаласа [8]. Так как эта теория очень сложна, то большое значение приобретают методы решения исходных уравнений. В настоящее время на практике применяются два метода. Один из них заключается в использовании итерационного процесса, в котором в качестве первого приближения берётся решение задачи для случая наличия ЛТР. Другой метод основан на замене уравнений данной теории системой алгебраических уравнений для всех искомых величин в разных точках фотосферы. Очевидно, что последний метод требует применения очень мощных ЭВМ. Результаты расчётов моделей фотосфер при отсутствии ЛТР содержатся как в уже упомянутой монографии [8], так и во многих оригинальных исследованиях. Проблема отклонения от ЛТР в поверхностных слоях звёзд будет затронута также при рассмотрении образования линейчатых спектров звёзд (см. §9).

§ 7. Специальные вопросы теории фотосфер

1. Протяжённые фотосферы.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука