Читаем Курс теоретической астрофизики полностью

Предположение о том, что толщина фотосферы гораздо меньше радиуса звезды, нельзя применять к некоторым особым звёздам (например, к звёздам типа Вольфа — Райе). Так обстоит дело тогда, когда плотность в фотосфере сравнительно медленно убывает с увеличением расстояния от центра звезды. В таких фотосферах слои одинаковой плотности должны считаться не плоскопараллельными, а сферическими.

Найдём зависимость температуры от оптической глубины в данном случае. Для этого мы должны воспользоваться уравнением переноса излучения в форме (1.20). Проинтегрировав это уравнение по всем частотам, получаем

cosθ

∂𝐼

∂𝑟

-

sinθ

𝑟

∂𝐼

∂𝑟

=-

α

𝐼

+

ε

,

(7.1)

где α — средний коэффициент поглощения. Обозначая, как обычно, ε=α𝑆, в качестве условия лучистого равновесия имеем

𝑆

=

𝐼

𝑑ω

.

(7.2)

Интегрирование (7.1) по всем направлениям при учёте (7.2) приводит к формуле

𝐻

=

𝐶

𝑟²

,

(7.3)

где 𝐶 — некоторая постоянная. (Очевидно, что 4π𝐶 есть светимость звезды.)

Умножая (7.1) на cosθ и интегрируя по всем направлениям, в приближении Эддингтона находим

3

𝑑𝑆

𝑑𝑟

=-

α

𝐻

,

(7.4)

или, на основании (4.15),

𝑎𝑐

3

𝑑𝑇⁴

𝑑𝑟

=-

α

𝐻

.

(7.5)

Для коэффициента поглощения α возьмём выражение

α

~

ρ²

𝑇𝑠

(7.6)

[сравните с формулами (5.35) и (5.36)] и допустим, что плотность в фотосфере обратно пропорциональна некоторой степени расстояния от центра звезды, т.е.

ρ

~

1

𝑟𝑛

.

(7.7)

Подставляя (7.3), (7.6) и (7.7) в уравнение (7.5) и интегрируя его, получаем

𝑇

=

𝑇₁

𝑟₁

𝑟

2𝑛+1

4+𝑠

,

(7.8)

где 𝑇₁ — температура на расстоянии 𝑟₁.

Пользуясь формулами (7.7) и (7.8), можно также легко получить зависимость оптической глубины τ от расстояния 𝑟. Подстановка указанных формул в соотношение 𝑑τ=-α 𝑑𝑟 и интегрирование даёт

τ

=

𝑟₁

𝑟

2

4𝑛-𝑠-2

4+𝑠

(7.9)

где под 𝑟₁ теперь понимается расстояние от центра звезды при τ=1. Из (7.8) и (7.9) получаем искомую зависимость 𝑇 от τ:

𝑇

=

𝑇₁

τ

2𝑛+1

2(4𝑛-𝑠-2)

.

(7.10)

Возьмём, например, 𝑛=2 и 𝑠=4. Тогда имеем

𝑇

=

𝑇₁

τ

5/4

.

(7.11)

Таким образом, в протяжённой фотосфере температура возрастает с оптической глубиной гораздо быстрее, чем в фотосфере, состоящей из плоскопараллельных слоёв.

Знание зависимости 𝑇 от τ=1 даёт возможность вычислить распределение энергии в непрерывном спектре звезды. Для этого надо воспользоваться уравнением переноса излучения (1.20), положив в нём, на основании гипотезы о локальном термодинамическом равновесии, ενν𝐵ν(𝑇). Первоначально в теории протяжённых фотосфер принималось, что коэффициент поглощения не зависит от частоты. В таком случае кривая распределения энергии в непрерывном спектре звезды получалась очень сильно отличающейся от планковской кривой — с большим избытком излучения в ультрафиолетовой части спектра. Однако при учёте зависимости коэффициента поглощения от частоты указанного избытка излучения не получается вследствие сильного поглощения за границами основных серий атомов. Следует также иметь в виду, что в протяжённых фотосферах возможны очень большие отклонения от локального термодинамического равновесия.

2. Покровный эффект.

Излучение звезды в непрерывном спектре, проходя через поверхностные слои звезды, испытывает частичное поглощение в спектральных линиях. Энергия, поглощённая в линиях, возвращается обратно в фотосферу. Вследствие этого увеличивается плотность излучения в фотосфере, а значит, и её температура. Это явление называется покровным эффектом.

Обозначим через 𝐴 долю энергии, поглощённой в спектральных линиях. Эта величина может быть найдена из наблюдений. Например, для Солнца она приблизительно равна 10%.

Поглощение энергии в линиях происходит в поверхностном слое с оптической толщиной в непрерывном спектре порядка нескольких десятых. Однако для простоты мы сейчас примем, что энергия поглощается в линиях на границе звезды (при τ=0). Тогда при предположении о независимости коэффициента поглощения в непрерывном спектре от частоты (или при использовании среднего коэффициента поглощения) учёт покровного эффекта может быть произведён точно.

При составлении уравнения лучистого равновесия для данной задачи надо иметь в виду, что на каждый элементарный объём в фотосфере падает как диффузное излучение, идущее со всех сторон, так и излучение, отражённое от границы и ослабленное по пути. Интенсивность диффузного излучения мы обозначим через 𝐼(τ,μ), а интенсивность излучения, отражённого от границы,— через 𝐼. Тогда в качестве условия лучистого равновесия получаем

𝑆(τ)

=

1

2

+1

-1

𝐼(τ,μ)

𝑑μ

+

1

2

𝐼

1

0

𝑒

-τ/μ

𝑑μ

.

(7.12)

Подставляя в (7.12) выражение 𝐼(τ,μ) через 𝑆(τ), найденное из уравнения переноса излучения (т.е. поступая так же, как при получении уравнения Милна), находим

𝑆(τ)

=

1

2

0

𝐸₁|τ-τ'|

𝑆(τ')

𝑑τ'

+

1

2

𝐼

𝐸₂τ

.

(7.13)

Для определения величины 𝐼 мы должны воспользоваться соотношением

𝐼

=

2𝐴

1

0

𝐼(0,μ)

μ

𝑑μ

,

(7.14)

выражающим собой тот факт, что из количества энергии, падающей на границу, отражается обратно доля 𝐴. Очевидно, что в данном случае поток излучения должен быть таким же, как и при отсутствии покровного эффекта (т.е. равным π𝐹). Поэтому имеем

2(1-𝐴)

1

0

𝐼(0,μ)

μ

𝑑μ

=

𝐹

.

(7.15)

Из (7.14) и (7.15) следует

𝐼

=

𝐴

1-𝐴

𝐹

.

(7.16)

Подставляя (7.16) в (7.13), получаем

𝑆(τ)

=

1

2

0

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука