Читаем Курс теоретической астрофизики полностью

С другой стороны, энергия, излучаемая туманностью в линиях «небулия» за 1 с, может быть представлена в виде

4π𝑟

²

Neb

𝐴

𝑖

π𝐼

ν𝑖

ν

𝑖

,

где 𝐴𝑖 — величины, определённые формулой (22.20), а суммирование ведётся по всем линиям «небулия», возбуждаемым электронным ударом.

При сделанных предположениях два последних количества должны быть равны друг другу, т.е. должно быть

ν₀

𝐼

ν

(

ν

-

ν₀

)

𝑑ν

ν

=

Neb

𝐴

𝑖

π𝐼

ν𝑖

ν

𝑖

.

(22.31)

Заменяя здесь величину 𝐼ν планковской интенсивностью, получаем

ν₀

ν²(ν-ν₀)

𝑑ν

=

Neb

𝐴

𝑖

ν

𝑖

,

exp

ℎν

-1

exp

ℎν

𝑖

-1

𝑘𝑇

𝑘𝑇

(22.32)

или, воспользовавшись обозначениями (22.26),

𝑥₀

𝑥²(𝑥-𝑥₀)

𝑒𝑥-1

𝑑𝑥

=

Neb

𝐴

𝑖

𝑥𝑖

𝑒𝑥𝑖-1

(22.33)

Формула (22.33) даёт возможность определить температуру звезды 𝑇, если известны из наблюдений величины 𝐴𝑖 для линий «небулия».

Применив данный метод к определению температур ядер планетарных туманностей, Занстра получил температуру 39 000 K для NGC6543, 38 000 K для NGC6552 и 50 000 K для NGC 7009. Мы видим, что эти значения температур весьма близки к приведённым выше значениям 𝑇, найденным по линиям водорода.

Для грубой оценки температур звёзд Занстра применил изложенный метод в упрощённом виде. Пользуясь формулой (22.33) и тем фактом, что линии 𝙽₁ и 𝙽₂ определяют собой главную часть визуальной светимости туманности, он получил зависимость между температурой звезды 𝑇 и разностью звёздных величин ядра и туманности 𝑚-𝑚𝑛. Очевидно, что чем больше эта разность, тем выше температура звезды. По наблюдённым значениям разности 𝑚-𝑚𝑛 были определены температуры большого числа ядер туманностей. Оказалось, что в некоторых случаях эти температуры достигают 100 000 K. Высокие температуры звёзд, получаемые этим способом, подтверждаются, как правило, и другими признаками, в частности, большой интенсивностью линий 𝙷𝚎 II в спектрах туманностей.

Изложенные в этом параграфе методы определения температур звёзд широко применяются в астрофизике. При помощи этих методов определяют не только температуры ядер туманностей, но и температуры звёзд с яркими линиями в спектрах: звёзд классов Be, Вольфа — Райе, новых и др.

§ 23. Ионизация атомов

1. Число рекомбинаций.

Как было выяснено, в газовых туманностях происходит ионизация атомов под действием излучения горячих звёзд. Вместе с тем в туманностях происходят и обратные процессы — захваты ионами свободных электронов, т.е. рекомбинации атомов. Число ионизаций может быть определено при помощи коэффициента поглощения в непрерывном спектре, введённого в § 5. Теперь мы получим формулы для определения числа рекомбинаций.

Пусть 𝑛⁺ и 𝑛𝑒 — число ионов и число свободных электронов в 1 см³ соответственно, а 𝑓(𝑣) 𝑑𝑣 — доля электронов со скоростями от 𝑣 до 𝑣+𝑑𝑣. Обозначим через β𝑖(𝑣) эффективное поперечное сечение для захвата электрона со скоростью 𝑣 на 𝑖-й уровень. Тогда число захватов электронов со скоростями от 𝑣 до 𝑣+𝑑𝑣, происходящих в 1 см³ за 1 с, будет равно

𝑛⁺𝑛

𝑒

β

𝑖

(𝑣)

𝑓(𝑣)

𝑣

𝑑𝑣

.

Полное число рекомбинаций в 1 см³ за 1 с на 𝑖-уровень мы представим в виде 𝑛𝑒𝑛⁺𝐶𝑖(𝑇𝑒), где 𝑇𝑒 — температура электронного газа. Очевидно, что

𝐶

𝑖

(𝑇

𝑒

)

=

0

β

𝑖

(𝑣)

𝑓(𝑣)

𝑣

𝑑𝑣

.

(23.1)

Величина β𝑖(𝑣) связана с коэффициентом поглощения в непрерывном спектре атомом, находящимся в 𝑖-м состоянии. Для установления этой связи рассмотрим состояние термодинамического равновесия. В этом случае имеет место детальное равновесие, при котором любой процесс уравновешивается обратным процессом. В частности, число ионизаций, происходящих с 𝑖-го уровня при поглощении квантов с частотами от ν до ν+𝑑ν, должно равняться числу захватов на этот уровень электронов со скоростями от 𝑣 до 𝑣+𝑑𝑣 причём

ℎν

=

1

2

𝑚𝑣²

+

χ

𝑖

.

(23.2)

Число ионизаций с 𝑖-го уровня при поглощении квантов с частотами от ν до ν+𝑑ν в 1 см³ за 1 с равно

𝑛

𝑖

𝑘

𝑖ν

1-exp

-

ℎν

𝑘𝑇

𝑐ρν

ℎν

𝑑ν

,

где 𝑛𝑖 — число атомов в 𝑖-м состоянии, 𝑘𝑖ν — коэффициент поглощения, рассчитанный на один атом (множитель в скобках учитывает отрицательное поглощение), ρν — плотность излучения частоты ν. На основании принципа детального равновесия имеем

𝑛⁺𝑛

𝑒

β

𝑖

(𝑣)

𝑓(𝑣)

𝑣

𝑑𝑣

=

𝑛

𝑖

𝑘

𝑖ν

1-exp

-

ℎν

𝑘𝑇

𝑐ρν

ℎν

𝑑ν

.

(23.3)

Как известно, при термодинамическом равновесии функция 𝑓(𝑣) определяется формулой Максвелла, плотность излучения ρν — формулой Планка и распределение атомов по состояниям — формулами Больцмана и Саха. При помощи перечисленных формул из соотношения (23.3) получаем

β

𝑖

(𝑣)

=

ℎ²ν²

𝑐²𝑚²𝑣²

𝑔𝑖

𝑔⁺

𝑘

𝑖ν

,

(23.4)

где 𝑔𝑖 — статистический вес 𝑖-го состояния данного атома, и 𝑔⁺ — статистический вес основного состояния иона.

Формула (23.4) и даёт искомую связь между величинами β𝑖(𝑣) и 𝑘𝑖ν. Хотя при выводе её предполагалось термодинамическое равновесие, но она верна, разумеется, всегда (так как вероятности поглощения и излучения квантов не зависят от распределения атомов по состояниям и квантов по частотам).

Подставляя (23.4) в (23.1), получаем следующее выражение для коэффициента рекомбинации:

𝐶

𝑖

(𝑇

𝑒

)

=

𝑔𝑖

𝑔⁺

ℎ²

𝑐²𝑚²

0

ν²

𝑣

𝑘

𝑖ν

𝑓(𝑣)

𝑑𝑣

.

(23.5)

Здесь функция 𝑓(𝑣) даётся формулой Максвелла при температуре 𝑇𝑒, т.е.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука