Читаем Курс теоретической астрофизики полностью

где τ₀ — оптическая толщина туманности непосредственно за границей серии Лаймана. Здесь принято во внимание, что коэффициент поглощения водорода обратно пропорционален кубу частоты. При τ₀=∞ формула (22.28) переходит в формулу (22.27). Если для данной туманности τ₀≪1, а при определении температуры звезды мы пользуемся всё-таки формулой (22.27), то, как легко видеть, значение температуры получается ниже истинного.

Нахождение температуры звезды из уравнения (22.28) требует предварительного определения оптической толщины туманности τ₀, что представляет собой довольно трудную задачу. Иногда уравнение (22.28) применяют для определения величины τ₀, приняв для температуры звезды значение, полученное каким-либо другим способом.

5. Излучение звёзд в ультрафиолетовой области спектра.

Свечение газовых туманностей в линиях многих атомов (однако, как увидим ниже, не всех) происходит так же, как свечение в линиях водорода в результате фотоионизаций и последующих рекомбинаций. Эти атомы поглощают энергию звезды за границами своих основных серий и излучают её частично в видимой области спектра. Так, в частности, светятся туманности в линиях гелия и ионизованного гелия.

На рисунке 30 схематически изображено распределение энергии в спектре звезды и указаны те области спектра, за счёт энергии которых туманность светится в линиях водорода, гелия и ионизованного гелия. Напомним, что энергии ионизации 𝙷, 𝙷𝚎 I и 𝙷𝚎 II равны соответственно 13,6, 24,6 и 54,4 эВ, в то время как энергия квантов в видимой части спектра порядка 2—3 эВ. Следовательно, свечение туманностей в линиях рассматриваемых атомов происходит за счёт энергии звезды в далёкой ультрафиолетовой области спектра.

Рис. 30

По интенсивностям линий разных атомов, возникающих в результате фотоионизаций и рекомбинаций, можно определять температуры звёзд, как и по интенсивностям водородных линий. Будем считать, что туманность поглощает все кванты звезды за границей основной серии данного атома. Тогда число этих квантов (как и в случае атома водорода) будет равно числу квантов, излучаемых туманностью во второй серии. Поэтому для определения температуры звезды получаем следующее уравнение, являющееся обобщением уравнения (22.27):

𝑥₀

𝑥² 𝑑𝑥

𝑒𝑥-1

=

𝑄

𝐴

𝑖

𝑥𝑖³

𝑒𝑥𝑖-1

.

(22.29)

Здесь 𝑥₀=ℎ₀/𝑘𝑇 — частота ионизации из основного состояния рассматриваемого атома. Суммирование в правой части уравнения (22.29) ведётся по линиям этого атома в видимой части спектра, а множитель 𝑄 представляет собой отношение числа квантов во второй серии к числу квантов в наблюдаемых линиях. Для водорода 𝑄=1, если наблюдаются все линии бальмеровской серии. Для других атомов величину 𝑄 можно оценить на основании теоретических определений интенсивностей эмиссионных линий (см. § 24). Следует отметить, что в точном знании величины 𝑄 нет необходимости, так как большое изменение интеграла в левой части уравнения (22.29) соответствует небольшим изменениям температуры.

Определение температуры звезды по линиям разных атомов приводит, вообще говоря, к различным результатам. Например, для ядра туманности NGC 7009 получена температура 55 000 К по линиям водорода и 70 000 К по линиям ионизованного гелия. В некоторых случаях расхождение между температурами ещё больше.

Для объяснения таких результатов мы должны считать, что интенсивность излучения звезды не может быть представлена формулой Планка с одной и той же температурой во всех участках спектра. Кроме того, различия в температурах, определённых по линиям разных атомов, могут быть вызваны неполным поглощением туманностью излучения звезды за границами основных серий некоторых атомов. В последнем случае, как было выяснено выше, уравнение (22.29) даёт заниженные значения температуры.

При практическом применении изложенного метода определения температур звёзд большая трудность состоит в нахождении величин 𝐴𝑖 из сравнения спектров туманности и звезды. Поэтому значительный интерес представляет возможность определения 𝑇 по отношению интенсивностей линий двух каких-либо атомов в спектре туманности. Очевидно, что в этом случае величина 𝑇, по существу, находится из сравнения между собой участков спектра звезды за границами основных серий этих атомов.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука