Читаем Курс теоретической астрофизики полностью

Впервые указанная возможность была использована В. А. Амбарцумяном, предложившим определять температуру звезды по отношению интенсивностей линий 𝙷β водорода и λ 4686 Å ионизованного гелия в спектре туманности. Чтобы связать это отношение с величиной 𝑇, мы можем воспользоваться уравнением (22.29), написав его сначала для водорода, а затем для ионизованного гелия. При этом в правой части уравнения (22.29) в первом случае ограничимся линией 𝙷β, а во втором — линией λ 4686 Å. Соответствующие значения величины 𝑄 в обоих случаях будут близки между собой, так как атомы 𝙷 и 𝙷𝚎⁺ подобны друг другу, а эйнштейновские коэффициенты вероятностей переходов 4→2 и 4→3 (при которых излучаются рассматриваемые линии) почти одинаковы. Поэтому, разделив одно из упомянутых уравнений на другое, мы приближённо (с точностью до множителя, близкого к единице) получаем

4𝑥₀

𝑥₀

𝑥² 𝑑𝑥

𝑒𝑥-1

4𝑥₀

𝑥² 𝑑𝑥

𝑒𝑥-1

=

𝐸𝙷β

𝐸λ4686

(22.30)

где 𝑥₀ — величина, определённая формулой (22.26) для водорода.

Температуры звёзд, определённые при помощи уравнения (22.30), оказываются весьма высокими. Например, для ядра туманности NGC 7009 была получена температура 115 000 K. По-видимому, столь высокие значения температур объясняются в основном неполным поглощением туманностью излучения звезды за границей лаймановской серии. Такое объяснение кажется вероятным потому, что в туманностях, в которых дважды ионизован гелий, должен быть в сильной степени ионизован водород. Вследствие этого оптическая толщина туманности за границей серии Лаймана может быть меньше единицы.

Для определения температур звёзд по эмиссионным линиям в спектрах туманностей могут быть использованы линии не только водорода, гелия и ионизованного гелия, но и других атомов (𝙽 III, 𝙲 IV и т.д.). Вместо температур можно также определять просто числа квантов, излучаемых звездой за границами основных серий атомов. При этом для атомов с небольшими потенциалами ионизации (𝙷, 𝙷𝚎) необходимо учитывать возможность неполного поглощения туманностью таких квантов. Кванты за границами основных серий атомов с большими потенциалами ионизации обычно поглощаются туманностью полностью. Таким образом, по интенсивностям эмиссионных линий разных атомов в видимой части спектра туманности мы можем найти распределение энергии в далёкой ультрафиолетовой области спектра звезды.

6. Определение температур звёзд по линиям «небулия».

Как уже упоминалось, рассмотренный выше механизм свечения газовых туманностей (фотоионизации с последующими рекомбинациями) не является единственным. Наряду с ним в туманностях действует другой механизм, вызывающий свечение в главных небулярных линиях 𝙽₁ и 𝙽₂, а также в других линиях «небулия».

Тот факт, что свечение туманностей в линиях 𝙽₁ и 𝙽₂ происходит не в результате фотоионизаций, доказывается следующими соображениями:

1. Если бы кванты в линиях 𝙽₁ и 𝙽₂ возникали за счёт излучения звезды за границей основной серии дважды ионизованного кислорода, то температуры звёзд были бы чрезвычайно высоки, в некоторых случаях свыше миллиона кельвинов.

2. Имеется ряд планетарных туманностей, в спектрах которых нет линий ионизованного гелия, что объясняется слабостью излучения ядер за границей основной серии этого иона. Если бы линии 𝙽₁ и 𝙽₂ возникали вследствие фотоионизации, то в данном случае они также отсутствовали бы, так как потенциалы ионизации 𝙷𝚎⁺⁺ и 𝙾⁺⁺ почти совпадают. Однако линии 𝙽₁ и 𝙽₂ в спектрах всех планетарных туманностей являются наиболее интенсивными.

В действительности свечение газовых туманностей в линиях «небулия» вызывается возбуждением атомов при столкновениях со свободными электронами. Потенциалы возбуждения состояний, при переходах из которых излучаются кванты в рассматриваемых линиях, очень невелики (например, 2,5 В для линий 𝙽₁ и 𝙽₂). Поэтому в туманностях имеется большое количество свободных электронов, энергия которых достаточна для возбуждения указанных состояний. Разумеется, в конечном счёте свечение туманностей в линиях «небулия» происходит за счёт излучения звезды, так как свободные электроны приобретают свою энергию при фотоионизациях.

По свечению туманностей в линиях «небулия» могут определяться температуры звёзд, как и по свечению в линиях, имеющих рекомбинационное происхождение. Соответствующие формулы были также получены Занстра. При этом были сделаны следующие предположения: 1) большинство свободных электронов возникает при фотоионизации водородных атомов, 2) все L𝑐-кванты звезды поглощаются туманностью, 3) вся энергия, получаемая электронами при ионизации, идёт на возбуждение линий «небулия».

Как известно, при ионизации атома излучением частоты ν кинетическая энергия оторванного электрона оказывается равной

1

2

𝑚𝑣²

=

ℎν

-

ℎν₀

,

где ℎν₀ —частота ионизации атома (в данном случае водорода). Если туманность поглощает всё излучение звезды за границей лаймановской серии, то энергия, приобретаемая свободными электронами за 1 с, будет равна

4π𝑟

²

ν₀

π𝐼ν

ℎν

(

ℎν

-

ℎν₀

)

𝑑ν

.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука