Читаем Хаос и структура полностью

5. Предложенные нами рассуждения пытаются вскрыть логическую природу математического понятия дифференциала. Теперь мы можем обратиться к исследованию другой проблемы, родственной, но не тождественной с этой, именно к исследованию логического коррелята этого понятия. Другими словами, что такое дифференциал в самой логике, т. е. что такое дифференциал понятия? Раньше мы говорили о понятии дифференциала. Теперь стоит вопрос о дифференциале понятия. Вопрос этот, можно сказать, совсем не исследовался. Если о понятии дифференциала всегда шли споры и давались его многочисленные характеристики и если о применении метода бесконечно–малых в логике и философии тоже говорилось достаточно, то, кажется, еще никто не доходил до такой конкретности в постановке вопроса, чтобы прямо указать пальцем, где же именно в логическом мышлении мы имеем производную и где же именно дифференциал. А ведь без этого вся теория философского применения метода бесконечно–малых остается чрезвычайно абстрактной и далекой от живого мышления и ограничивается только намерениями и планами без перехода к достижениям. Надо прямо пальцем ткнуть в тот элемент логического мышления, который является коррелятом математического дифференциала. И этот элемент должен быть достаточно простым и понятным, чем–то совершенно элементарным, как элементарно и само математическое понятие дифференциала, выступающее уже на первых страницах учебников математического анализа. Больше того. Поскольку из всех типов логики формальная логика наиболее распространена и считается наиболее понятной и поскольку формальная логика есть известного рода методический коррелят для всякой другой логики, в том числе и для инфинитезимальной, необходимо найти категорию дифференциала—конечно, в соответствующем методическом преломлении — уже в самой формальной логике. Если дифференциал понятия есть нечто логически реальное, т. е. реальное, а не выдуманное достояние логического мышления, то наиболее простой и доказательный способ обнаружения логической значимости дифференциала — это указание его (в соответствующей формально–логической модификации) именно в самой же формальной логике.

Этим мы и займемся.

6. Тут, очевидно, надо логически расшифровать все то же произведение производной на произвольное приращение независимого переменного.

Что значит «произведение», «умножить»? Умножить данное число — значит повторить его слагаемым столько раз, сколько единиц содержится в множителе, т. е. воспроизвести, осуществить, воплотить так, как того требует множитель. Множимое здесь производная, т. е., согласно нашим выводам, принцип деления понятия. Множитель — то или иное приращение независимого переменного— есть, по нашему предположению, известное изменение в вещах, та или иная материальная перемена. Следовательно, принцип деления понятия надо изменить так, как того требует данная материальная перемена. Пусть принцип, или основание, деления есть у нас, скажем, «цвет», т. е. данное понятие мы делим по признаку цветности. Что же такое этот цвет, если его взять с точки зрения той или иной его материальной перемены? Это значит взять какой–нибудь цвет, напр. красный, желтый, белый. Красный, желтый, белый и т. д. есть, во–первых, просто цвет вообще, а во–вторых, та или иная его материальная спецификация. Умножить производную от функции (понимая под функцией общее понятие) на произвольно выбранное приращение независимого переменного—это и значит попросту специфицировать основание деления данного понятия. Если я карандаши делю по их цвету, то это значит, что я так или иначе специфицирую понятие цвета, т. е. говорю: черный карандаш, синий карандаш, красный карандаш и т. д.

Перейти на страницу:

Похожие книги