Читаем Хаос и структура полностью

т. е. для случая, когда есть независимое переменное, можно писать:

dy=y'dx.

Другими словами, дифференциал функции равен произведению ее производной на дифференциал независимого переменного.

2. Надо сказать, что, давая столь ясное и безупречное построение, математики очень мало сделали для его логического разъяснения (да они едва ли и были обязаны это делать, так что насколько формально ясна и отчетлива математическая идея дифференциала, настолько неясна и неотчетлива она логически).

Что такое дифференциал функции? Самое грубое разъяснение этого заключалось бы в том, что это — обыкновенная конечная величина. Позитивисты из математиков так обыкновенно и бахвалятся, что–де тут и задумываться не над чем: дифференциал, если его вычислить, есть 1, 2, 3 или какое–нибудь другое число или величина. По–видимому, это очень примитивное суждение. Таким образом можно аннулировать весь математический анализ, так как производная тоже может быть конечной величиной, интеграл — гоже конечная величина, всякий предел тоже есть нечто конечное или по крайней мере точно установленное, постоянное и т. д. и т. д. Математическое опровержение этого заключается в том, что дифференциал есть не просто величина, но—функция, т. е. предполагает наличие определенного закона получения этой величины. Кроме того, дифференциал даже и в виде функции отнюдь не всегда имеет определенное значение. Известны такие непрерывные функции, которые не во всех своих точках дифференцируемы, т. е. соответствующая им кривая не везде имеет касательную. Такие функции дифференцируются, т. е. имеют производную, но эта производная не во всех точках обладает определенным значением. Однако раз есть производная, есть и дифференциал, и раз производная не везде обладает определенным значением, то и дифференциал такой функции отнюдь не везде получает точное и определенное значение. Таким образом, сказка о дифференциале функции как о той или иной только конечной величине рушится сама собой.

Кроме того, если бы дифференциал был только конечной величиной, то это означало бы, что в определение интеграла нельзя вводить дифференциала, ибо иначе всякий интеграл оказался бы бесконечно большой величиной, потому что интеграл получается из дифференциала в результате предельного суммирования бесконечно умаляющихся величин. На самом же деле интеграл может сколько угодно быть конечной величиной. Следовательно, дифференциал отнюдь не есть нечто конечное в абсолютном смысле. Из того, что он может быть выражен конечным образом, отнюдь не вытекает конечность его собственной природы. В том, что мы чертим окружность, нет ровно ничего иррационального: взял циркуль и — черти. Но это еще не значит, что отношение окружности к диаметру есть рациональное число. При всей внешней конечности окружности, при всей простоте ее чертежа отношение ее длины к диаметру, оказывается, невозможно выразить никаким конечным числом знаков. Таким образом, конечность дифференциала не есть нечто абсолютное и она совсем не характеризует его сущности.

Вместе с тем категория дифференциала, разумеется, как–то связана с конечным. Какой–то конечный элемент входит в эту категорию, поскольку он есть функция производной (которая может быть конечной) и вполне произвольного приращения аргумента (которое здесь, следовательно, тоже может мыслиться и конечным). Таким образом, конечность входит в понятие дифференциала, но не исчерпывает его.

Часто можно встретить такое определение дифференциала. Это, говорят, есть бесконечно–малая величина, характеризующая приращение функции. Это определение также не исчерпывающе для дифференциала. Во–первых, дифференциал вовсе не есть только просто величина, но предполагает определенный принцип получения этой величины. Во–вторых, бесконечно–малое указывает не просто на величину, а на процесс бесконечного и непрерывного уменьшения величины. Дифференциал в этом случае всегда только и был бы процессом уменьшения. А по определению, дифференциал фактически выступает именно в качестве конечного (хотя, как мы установили выше, и не только в качестве конечного). Конечное никак невозможно исключить из дифференциала. А чистая процессуаль–ность как раз исключает.

В старые наивные времена, до Коши, появлялась мысль, что дифференциал есть просто нуль. Так рассуждал ни больше и ни меньше как великий Эйлер. Но как же это может быть? Ведь если всерьез принимать дифференциал за нуль, то дифференциальное частное было бы А это сами математики считают неопределенностью. Куда же делась бы в таком случае производная? Ведь производная связана не с нулями, а с приближением функции и аргумента к нулю. А это огромная разница. Если мы дифференциал объявим нулем, а потом будем вместе с математиками «раскрывать неопределенность» этого подставляя вместо нулей бесконечно умаляющиеся наращения, то это типичнейшее idem per idem[208]. Правда, сам Эйлер в этой теории нетверд и кое–где рассматривает дифференциалы вовсе не как нули, а как бесконечно–малые приращения.

Однако даже и мнение Эйлера я бы не отбросил целиком.

Перейти на страницу:

Похожие книги