Читаем Хаос и структура полностью

Итак, дифференциал функции как функция ее производной есть прежде всего функция синтеза предела, функция предельного синтеза. Этот момент чрезвычайно важен. Он указывает на то, что нечто правильное было в этих наивных исканиях математиков, когда дифференциал объявлялся то конечной, то бесконечной величиной, то нулем. Поскольку дифференциал есть определенная функция некоей предельности, уже одно это свидетельствует о том, что в дифференциале есть и нечто конечное, и нечто бесконечное, и даже нуль. Конечное и бесконечное содержится, как мы сейчас установили, во всяком пределе. А нуля не избежать потому, что производная (в виде которой и фигурирует предельность дифференциала) есть предел отношения величин, именно стремящихся к нулю. Таким образом, математики, дававшие указанные выше понимания дифференциала, не были абсолютно не правы, а давали только односторонние понимания.

Итак, в дифференциале есть синтез конечного и бесконечного — предельного типа. Но что же дальше? Дифференциал есть, как мы знаем, функция и еще одного переменного, именно — произвольного приращения аргумента. Что это значит? Это значит, что функция предельности, фигурирующая в нем, дана не в чистом виде, но в измененном. И изменение это произошло тут в направлении изменения аргумента. Аргумент потребовал здесь некоего конечного фиксирования этой предельности, т. е. функционирования ее на некотором конечном протяжении. Дифференциал, стало быть, есть очень сложный принцип получения величины: он не только требует соединения конечного и бесконечного по типу предела, но он еще и требует определенной области, где бы это соединение воплощалось. Сама область тут в абсолютном смысле не определена, как и вообще весь дифференциал (да и все инфинитезимальные понятия) есть не абсолютная величина, а только принцип ее возникновения. Но что какая–то вообще определенная область осуществления синтеза должна быть, это тут зафиксировано строго.

Что же такое тогда дифференциал? Если говорить образно и грубо, то это есть: как бы закругленное становление, остановившийся бесконечный и непрерывный процесс; такое течение, которое совершается в определенных берегах; как бы снимок, что ли, со становления, некоторый отрезок, вырезка из этой стихии становления; остановившийся смысл той непрерывной текучести, о смысле которой невозможно было до этого момента и спрашивать ввиду полной неразличимости этого течения. Это отрезок линии постепенного изменения цвета какого–нибудь предмета, когда, напр., желтое переходит в зеленое — начиная от точки, когда желтое совершает первый сдвиг, до той точки, когда оно уже целиком перестает быть желтым и становится зеленым. Тут везде непрерывность, а стало быть, и бесконечность, бесконечно–малое, процесс бесконечно малого нарастания. Но тут и прерывность, а стало быть, и конечное, ибо разница между желтым и зеленым есть разница вполне определенных, устойчивых и конечных категорий. И здесь, наконец, переход одного конечного к другому через бесконечность непрерывных изменений первого конечного, т. е. переход именно к пределу. Поэтому, давая логическую формулу дифференциала в раскрытом виде, можно было бы сказать так: дифференциал есть результат, т. е. пройденный путь (как целое)[209] от одного конечного к другому конечному через бесконечность непрерывных (бесконечно малых) изменений первого конечного. Тут мы имеем и конечное, и бесконечное, и их синтез, и их синтез в виде предела, и осуществленность этого предельного синтеза на конечном расстоянии (или разнице) двух конечных величин; и, наконец, тут мы имеем самый настоящий нуль, ибо дифференциал есть весь пройденный путь и достигнутость предела, а предел тут — не что иное, как нуль.

4. К предыдущему необходимо сделать одно замечание, которое в дальнейшем будет развито у нас в целую теорию, но которое сейчас необходимо сделать только в кратчайшем виде, просто для избежания возникающего здесь недоумения. Дело в том, что данное выше логическое определение дифференциала в своем существе не отличается от определения интеграла. В интеграле тоже есть и конечность, и бесконечность, и предел. Необходимо еще внести специ–фикум, чтобы получился именно дифференциал. Это мы и делаем ниже, в § [12]. Сейчас же только заметим, что различие этих понятий заключается не в их существе, но в их оперативном употреблении, в том, как ими пользуются в вычислениях и измерениях. Различие это метрическое. Если данный математический предмет рассматривается как единица измерения, как элемент более сложной цельности, то это есть дифференциал. Если же тот самый предмет фигурирует как результат изменения, как цельность известного множества элементов, то мы имеем здесь интеграл. Все это развивается у нас ниже, в § [12].

Перейти на страницу:

Похожие книги