Приверженцам теории ожидаемой полезности выводы Эллсберга казались очень странными. Каждый вариант должен иметь ценность, равную определенному количеству ютилей, и если вариант «красный» имеет более высокую полезность, чем вариант «черный», а вариант «не красный» – более высокую полезность, чем вариант «не черный», значит, вариант «красный» + «не красный» стоит больше ютилей, чем «черный» + «не черный», а ведь они одинаковые. Если вы хотите доверять ютилям, тогда вам придется сделать вывод о том, что участники эксперимента Эллсберга просто ошибаются в своих предпочтениях, что они не умеют делать расчеты, не поняли сути вопроса или просто сошли с ума. Однако, поскольку на самом деле среди приглашенных Эллсбергом людей были известные экономисты и специалисты по теории принятия решений, такой вывод создает ряд собственных проблем в сложившейся ситуации.
С точки зрения Эллсберга, этот парадокс объясняется ошибочностью теории ожидаемой ценности. Как скажет впоследствии Дональд Рамсфельд, есть известное неизвестное и есть неизвестное неизвестное, и с ними необходимо вести себя по-разному. «Известное неизвестное» подобно варианту «красный»: мы не знаем, какой шар будет вынут, но можем определить вероятность, что это будет шар нужного нам цвета. С другой стороны, вариант «черный» подвергает игрока воздействию «неизвестного неизвестного»: мы не только не уверены в том, что шар будет черным, но и не знаем, какова вероятность того, что он окажется черным. В книгах по теории принятия решений первый тип неизвестного называется
Однако ничто из сказанного выше не опровергает чрезвычайную полезность теории полезности. Существует множество ситуаций (одна из них – лотерея), и в них вся тайна, с которой мы сталкиваемся, связана с риском, который подчиняется точно определенным вероятностям. Тем не менее есть намного больше ситуаций, в которых «неизвестное неизвестное» присутствует, но играет не столь важную роль. Мы видим здесь своего рода перетягивание каната в математическом подходе к науке. Математики вроде Бернулли и фон Неймана создают формальные математические модели, проливающие свет на область исследований, понимание которой носило прежде расплывчатый характер. Ученые, подобные Эллсбергу, более свободно обращающиеся с математическими концепциями, стремятся понять пределы таких формальных математических моделей и по возможности усовершенствовать их, а если это невозможно – оставить сформулированные в категорических выражениях предупредительные знаки.
Работа Эллсберга написана в ярком художественном стиле, не свойственном формальной экономике. В заключительной части он пишет об участниках эксперимента следующее:
Байесовский подход и подход Сэвиджа дают ошибочные прогнозы и, по их мнению, плохие советы. Они сознательно, без всяких оправданий предпринимают действия, противоречащие этим аксиомам, поскольку такое поведение кажется им разумным. Неужели они ошибаются?
В Вашингтоне и корпорации RAND периода холодной войны теория принятия решений и теория игр считались высшей интеллектуальной ценностью и рассматривались в качестве научных инструментов, которые помогут выиграть следующую мировую войну, подобно тому как атомная бомба выиграла последнюю. Тот факт, что на самом деле эти инструменты могут иметь ограниченную область применения, особенно в ситуациях, у которых еще не было прецедентов, а значит, нет способа оценить вероятность (скажем,
Глава тринадцатая
Где пересекаются железнодорожные рельсы
Понятие полезности помогает объяснить одно загадочное явление, связанное с лотереей Cash WinFall. С одной стороны, когда игроки группы Джеральда Селби покупали большое количество лотерейных билетов, они использовали функцию Quic Pic, позволяя компьютерам лотереи выбирать числа в случайном порядке. С другой стороны, игроки группы Random Strategies выбирали числа сами. Это означало, что они должны были заполнять десятки тысяч карточек вручную, а затем по одному вставлять их в автомат в выбранном магазине – трудоемкое и невероятно скучное занятие.